Skip to main content

Bioassays of Inductive Interactions in Amphibian Development

  • Protocol
Developmental Biology Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 135))

  • 1326 Accesses

Abstract

Amphibian embryos provide excellent material for understanding the establishment of the vertebrate body plan during early development. Fertilized eggs are readily obtained by hormone-induced spawning, and their developmental rate can be adjusted by ambient temperature regulation. Eggs and early embryos are large enough in size for surgical manipulations, especially when compared with eggs of other vertebrates. Also, embryos and isolated embryonic tissues can be easily cultured for a minimum of several weeks in a simple salt solution containing antibiotics. These advantageous features of amphibian eggs and embryos have led to the discovery of the primary embryonic organizer, various inducing factors, and a variety of cellular events involved in inductive interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spemann, H. and Mangold, H. (1924) Ýber Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Arch. Mikrosk. Anat. Entwicklungsmech. 100, 599–638.

    Article  Google Scholar 

  2. Nieuwkoop, P. D. (1969) The formation of mesoderm in urodelan amphibians, Pt. 1: Induction by the endoderm. Wilhelm Roux’ Arch. Entwicklungsmech. Org. 162, 341–373.

    Article  Google Scholar 

  3. Asashima, M. (1994) Mesoderm induction during early amphibian development. Dev. Growth Differ. 36, 343–355.

    Article  Google Scholar 

  4. Hamburger, V. (1988) The Heritage of Experimental Embryology. Hans Spemann and the Organizer. Oxford University Press, New York.

    Google Scholar 

  5. Kay, B. K. and Benjamin Peng, H., eds. (1991) Methods in Cell Biology. Xenopus laevis: Practical Uses in Cell and Molecular Biology. Academic, San Diego, CA.

    Google Scholar 

  6. Armstrong, J. B. and Duhon, S. T. (1989) Induced spawnings, artificial insemination, and other genetic manipulations, in Developmental Biology of the Axolotl (Armstrong, J. B. and Malacinski, G. M., eds.), Oxford University Press, New York, pp. 228–235.

    Google Scholar 

  7. Schreckenberg, G. M. and Jacobson, A. G. (1975) Normal stages of development of the axolotl, Ambystoma mexicanum. Dev. Biol. 42, 391–400.

    Article  CAS  Google Scholar 

  8. Bordzilovskaya, N. P. and Dettlaff, T. A. (1975) Axolotl: Ambystoma mexicanum (Cope), in Objects of the Biology of Development (Dettlaff, T. A., Geycinovich, A. E., and Brodsky, V. Y., eds.), Series on the Problems of the Biology of Growth, Academy of Sciences, USSR, Moscow, pp. 370–389.

    Google Scholar 

  9. Bordzilovskaya, N. P. and Dettlaff, T. A. (1979) Table of stages of the normal development of axolotl embryos and the prognostication of timing of successive developmental stages at various temperatures. Axolotl Newsletter 7, 2–22.

    Google Scholar 

  10. Matsuda, M. and Oya, T. (1977) Induced oviposition in the newt Cynops pyrrhogaster by subcutaneous injection of human chorionic gonadotropin. Zool. Mag. 86, 44–47.

    CAS  Google Scholar 

  11. Okada, Y. K. and Ichikawa, M. (1947) Normal stages of development of the Japanese newt, Triturus pyrrhogaster (Boie). Jpn. J. Exp. Morphol. 3, 1–6 (in Japanese).

    Google Scholar 

  12. Takano, K., Kikkawa, M., and Shinagawa, A. (1996) Production of hyperdorsal larvae by exposing uncleaved Xenopus eggs to a centrifugal force directed from the animal pole to the vegetal pole. Dev. Growth Differ. 38, 537–547.

    Article  Google Scholar 

  13. Nieuwkoop, P. D. and Faber, J. (1956) Normal Table of Xenopus laevis (Daudin), North-Holland, Amsterdam.

    Google Scholar 

  14. Rugh, R. (1956) Experimental Embryology. Burgess, Minneapolis, MN.

    Google Scholar 

  15. Komazaki, S. (1993) Movement of an epithelial layer isolated from early embryos of the newt, Cynops pyrrhogaster. I. Development of folding movement of the blastocoelic wall isolated from embryos before and during gastrulation. Dev. Growth Differ. 35, 461–470.

    Article  Google Scholar 

  16. Okamoto, M. (1972) A method for the removal of the jelly and vitelline membrane from the embryos of Xenopus laevis. Dev. Growth Differ. 14, 37–41.

    Article  CAS  Google Scholar 

  17. Becker, U., Tiedemann, H., and Tiedemann, H. (1959) Versuche zur Determination von embryonalem Amphibiengewebe durch Induktionsstoffe in Lösung. Z. Naturforsch. 14b, 608–609.

    CAS  Google Scholar 

  18. Yamada, T. and Takata, K. (1961) A technique for testing macromolecular samples in solution for morphogenetic effects on the isolated ectoderm of the amphibian gastrula. Dev. Biol. 3, 411–423.

    Article  PubMed  CAS  Google Scholar 

  19. Moriya, N., Uchiyama, H., and Asashima, M. (1993) Induction of pronephric tubules by activin and retinoic acid in presumptive ectoderm of Xenopus laevis. Dev. Growth Differ. 35, 123–128.

    Article  CAS  Google Scholar 

  20. Ariizumi, T., Sawamura, K., Uchiyama, H., and Asashima, M. (1991) Dose and time-dependent mesoderm induction and outgrowth formation by activin A in Xenopus laevis. Int. J. Dev. Biol. 35, 407–414.

    PubMed  CAS  Google Scholar 

  21. Slack, J. M. W., Darlington, B. G., Heath, J. K., and Godsave, S. F. (1987) Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature 326, 197–200.

    Article  PubMed  CAS  Google Scholar 

  22. Asashima, M., Nakano, H., Shimada, K., Kinoshita, K., Ishii, K., Shibai, H., and Ueno, N. (1990) Mesodermal induction in early amphibian embryos by activin A (erythroid differentiation factor). Roux’s Arch. Dev. Biol. 198, 330–335.

    Article  CAS  Google Scholar 

  23. Keller, R. E., Danilchik, J., Gimlich, R., and Shih, J. (1985) The function and mechanism of convergent extension during gastrulation of Xenopus laevis. J. Embryol. Exp. Morphol. 89(Suppl), 185–209.

    PubMed  Google Scholar 

  24. Sokol, S., Wong, G. G., and Melton, D. A. (1990) A mouse macrophage factor induces head structures and organizes a body axis in Xenopus. Science 249, 561–564.

    Article  PubMed  CAS  Google Scholar 

  25. Mangold, O. (1923) Transplantationsversuche zur Frage der Spezifität und der Bildung der Keimblätter. Arch. Mikrosk. Anat. Entwicklungsmech. 100, 193–301.

    Google Scholar 

  26. Holtfreter, J. (1933) Nachweis der Induktionsfähigkeit abgetöteter Keimteile. Isolations-und Transplantationsversuche. Wilhelm Roux’ Arch. Entwicklungsmech. Org. 128, 584–633.

    Article  Google Scholar 

  27. Ariizumi, T. and Asashima, M. (1995) Control of the embryonic body plan by activin during amphibian development. Zool. Sci. 12, 509–521.

    Article  PubMed  CAS  Google Scholar 

  28. Kao, K. R. and Elinson, R. P. (1988) The entire mesodermal mantle behaves as Spemann’s organizer in dorsal enhanced Xenopus laevis embryos. Dev. Biol. 127, 64–77.

    Article  PubMed  CAS  Google Scholar 

  29. Cooke, J. (1989) Mesoderm-inducing factors and Spemann’s organizer phenomenon in amphibian development. Development 107, 229–241.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Ariizumi, T., Takano, K., Asashima, M., Malacinski, G.M. (2000). Bioassays of Inductive Interactions in Amphibian Development. In: Walker, J.M., Tuan, R.S., Lo, C.W. (eds) Developmental Biology Protocols. Methods in Molecular Biology™, vol 135. Humana Press. https://doi.org/10.1385/1-59259-685-1:89

Download citation

  • DOI: https://doi.org/10.1385/1-59259-685-1:89

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-852-3

  • Online ISBN: 978-1-59259-685-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics