Methods for Constructing and Producing Retroviral Vectors

  • Andrea Gambotto
  • Seon Hee Kim
  • Sunyoung Kim
  • Paul D. Robbins
Part of the Methods in Molecular Biology™ book series (MIMB, volume 135)


Vectors derived from murine retroviruses have been used extensively for gene transfer in both preclinical and clinical studies. Retroviruses are small RNA viruses that replicate through a double-stranded DNA intermediate. The ability of retroviral vectors to integrate efficiently into the host DNA of infected cells, resulting in stable gene expression, makes them well suited for certain gene therapy applications. The majority of the applications using retroviral vectors have involved ex vivo methods in which cells are genetically modified in culture prior to introduction into the animal (1,2). However, the recent improvement in methods for production and concentration of retroviruses now allows for direct, in vivo applications (see Notes 1 and 2). This chapter will give a brief background on Moloney Murine Leukemia Virus- (MLV) based retroviruses and describe how to construct, produce, and titer replication-defective retroviral vectors.


Internal Ribosome Entry Site Murine Leukemia Virus Vesicular Stomatitis Virus Packaging Cell Viral Supernatant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Miller, A. D. (1992) Human gene therapy comes of age. Nature 357, 455–460.PubMedCrossRefGoogle Scholar
  2. 2.
    Mulligan, R. C. (1993) The basic science of gene therapy. Science 260, 926.PubMedCrossRefGoogle Scholar
  3. 3.
    Kim, S. H., Yu, S. S., Park, J. S., Robbins, P. D., An, C. S., and Kim, S. (1997) Construction of retroviral vectors with improved safety, gene expression, and versatility. J. Virol. 72, 994–1004.Google Scholar
  4. 4.
    Byun, J., Kim, S.-H., Kim, J. M., Robbins, P. D., Yim, J., and Kim, S. (1996) Analysis of the relative level of gene expression from different retroviral vectors used for gene therapy. Gene Ther. 3, 780–788.PubMedGoogle Scholar
  5. 5.
    Guild, B. C., Finer, M. H., Housman, D. E., and Mulligan, R. C. (1988) Development of retrovirus vectors useful for expressing genes in cultured murine embryonal cells and hematopoietic cells in vivo. J. Virol. 62, 3795–3801.PubMedGoogle Scholar
  6. 6.
    Dranoff, G., Jaffee, E., Lazenby, A., Golumbek, P., Levitsky, H., Brose, K., et al. (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA 90, 3539–3543.PubMedCrossRefGoogle Scholar
  7. 7.
    Byun, J., Kim, J. M., Kim, S.-H., Yim, J., Robbins, P. D., and Kim, S. (1996) Simple and rapid method for the determination of the recombinant retroviruses titer by G418 selection. Gene Ther. 3, 1018–1020.PubMedGoogle Scholar
  8. 8.
    Miller, A. D. (1992) Retroviral vectors. Curr. Top. Microb. Immunol. 158, 1–24.CrossRefGoogle Scholar
  9. 9.
    Miller, A. D., Miller, D. G., Garcia, J. V., and Lynch, C. M. (1993) Use of retroviral vectors for gene transfer and expression. Methods Enzymol. 217, 581–599.PubMedCrossRefGoogle Scholar
  10. 10.
    Zitvogel, L., Tahara, H., Robbins, P. D., Storkus, W. J., Clarke, M. R., Nalesnik, M. A., et al. (1995) Cancer immunotherapy of established tumors with IL-12. Effective delivery by genetically engineered fibroblasts. J. Immunol. 155, 1393–1403.PubMedGoogle Scholar
  11. 11.
    Riviere, I., Brose, K., and Mulligan, R. C. (1995) Effects of retroviral vector design on expression of human adenosine deaminase in murine bone marrow transplant recipients engrafted with genetically modified cells. Proc. Natl. Acad. Sci. USA 92, 6733–6737.PubMedCrossRefGoogle Scholar
  12. 12.
    Robbins, P. D., Tahara, H., Mueller, G., Hung, G., Bahnson, A., Zitvogel, L., et al. (1994) Retroviral vectors for use in human gene therapy for cancer, Gaucher disease, and arthritis. Ann. New York Acad. Sci. 716, 72–88.CrossRefGoogle Scholar
  13. 13.
    Miller, A. D. and Wolgamot, G. (1997) Murine retroviruses use at least six different receptors for entry into mus dunni cells. J. Virol. 71, 4531–4535.PubMedGoogle Scholar
  14. 14.
    Miller, A. D. (1990) Retrovirus packaging cells. Hum. Gene Ther. 1, 5–14.PubMedCrossRefGoogle Scholar
  15. 15.
    Pear, W. S., Nolan, G. P., Scott, M. L., and Baltimore, D. (1993) Production of high titer helper free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396.PubMedCrossRefGoogle Scholar
  16. 16.
    Kinsella, T. M. and Nolan, G. P. (1996) Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405–1413.PubMedCrossRefGoogle Scholar
  17. 17.
    Miller, A. D., Garcia, J. V., von Suhr, N., Lynch, C. M., Wilson, C., and Eiden, M. V. (1991) Construction and properties of retrovirus packaging lines based on gibbon ape leukemia virus. J. Virol. 65, 2220–2224.PubMedGoogle Scholar
  18. 18.
    Cosset, F. L., Takeuchi, Y., Battini, J. L., Weiss, R. A., and Collins, M. K. (1995) High titer packaging cells producing recombinant retroviruses resistant to human serum. J. Virol. 69, 7430–7436.PubMedGoogle Scholar
  19. 19.
    Danos, O. and Mulligan, R. C. (1988) Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host range. Proc. Natl. Acad. Sci. USA 85, 6460–6464.PubMedCrossRefGoogle Scholar
  20. 20.
    Ory, D. S., Neugeboren, B. A., and Mulligan, R. C. (1996) A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis vikrus G pseudotypes. Proc. Natl. Acad. Sci. USA 93, 11,400–11,406.PubMedCrossRefGoogle Scholar
  21. 21.
    Naldini, L., Blomer, U., Gage, F. H., Trono, D., and Verma, I. M. (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. USA 93, 11,382–11,388.PubMedCrossRefGoogle Scholar
  22. 22.
    Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Andrea Gambotto
    • 1
  • Seon Hee Kim
    • 1
    • 2
  • Sunyoung Kim
    • 2
  • Paul D. Robbins
    • 1
  1. 1.Department of Molecular Genetics and BiochemistryUniversity of Pittsburgh School of MedicinePittsburgh
  2. 2.Institute for Molecular Biology and GeneticsSeoul National UniversitySeoulKorea

Personalised recommendations