Quail-Chick Transplantation in the Embryonic Limb Bud

  • Elizabeth E. LeClair
  • Rocky S. Tuan
Part of the Methods in Molecular Biology™ book series (MIMB, volume 135)

Abstract

Chick and quail have been powerful partners in the investigation of avian development. Cells from these two species can develop harmoniously in heterospecific combinations, yet each remains histologically distinct, facilitating the fate mapping of transplanted tissues (1). This property of the quail-chick chimera has been used to track cell position and fate in many embryonic processes including gastrulation (2, 3, 4), neural tube formation (5), hematopoiesis (6), and craniofacial development (7, 8, 9) among others. One of the most accessible areas for such grafts is the embryonic chick limb bud, site of many pioneering manipulations (10; for review, see ref. 11). Quail-cell grafts have been used to investigate the origin of the limb bud from somatopleural mesoderm (12), the contribution of the somites to limb musculature (13, 14, 15, 16), and the effect of limb mesoderm on species-specific limb development (17).

Keywords

Microwave Agar Mold Chloroform Epoxy 

References

  1. 1.
    LeDouarin, N., Dieterlen-Lievre, F., and Teillet, M.-A. (1996) Quail-chick transplantations, in Methods in Avian Embryology, (Bronner-Fraser, M., ed.), Academic, New York, pp. 24–59.Google Scholar
  2. 2.
    Ooi, V. E. C., Sanders, E. J., and Bellairs, R. (1986) The contribution of the primitive streak to the somites in the avian embryo. J. Embryol. Exp. Morphol. 92, 193–206.PubMedGoogle Scholar
  3. 3.
    Veini, M. and Bellairs, R. (1991) Early mesoderm differentiation in the chick embryo. Anat. Embryol. 183, 143–149.PubMedCrossRefGoogle Scholar
  4. 4.
    Schoenwolf, G. C., Garcia-Martinez, V., and Dias, M. S. (1992) Mesoderm movement and fate during avian gastrulation and neurulation. Dev. Dyn. 193, 235–248.PubMedGoogle Scholar
  5. 5.
    LeDouarin, N. M., Catala, M., and Batini, C. (1997) Embryonic neural chimeras in the study of vertebrate brain and head development. Int. Rev. Cytol. 175, 241–309.PubMedCrossRefGoogle Scholar
  6. 6.
    Dieterlein-Lievre, F., Godin, I., and Parnadaud, L. (1997) Where do hematopoietic cells come from? Int. Arch. Allergy Immunol. 112, 3–8.CrossRefGoogle Scholar
  7. 7.
    Noden, D. M. (1991) Vertebrate craniofacial development: the relation between ontogenetic process and morphological outcome. Brain Behav. Evol. 38, 190–225.PubMedCrossRefGoogle Scholar
  8. 8.
    Couly, G. F., Coltey, P. M., and LeDouarin, N. M. (1992) The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 114, 1–15.PubMedGoogle Scholar
  9. 9.
    Couly, G. F., Coltey, P. M., and LeDouarin, N. M. (1993) The triple origin of the skull in higher vertebrates: A study in quail-chick chimeras. Development 117, 409–429.PubMedGoogle Scholar
  10. 10.
    Saunders, J. W., Jr. and Gaessling, M. (1968) Ectoderm-mesenchymal interactions in the origin of limb symmetry, in Epithelial-Mesenchyme Interactions (Fleischmajer, R. and Billingham, R. E., eds.), Williams & Wilkins, Baltimore, MD, pp. 78–97.Google Scholar
  11. 11.
    Saunders, J. W., Jr. (1996) Operations on limb buds of avian embryos, in Methods in Avian Embryology (Bronner-Fraser, M., ed.), Academic, New York, pp. 125–145.CrossRefGoogle Scholar
  12. 12.
    Geduspan, J. S. and Solursh, M. (1992) Cellular contribution of the different regions of the somatopleure to the developing limb. Dev. Dyn. 195, 177–87.PubMedGoogle Scholar
  13. 13.
    Beresford, B., LeLievre, C., and Rathbone, M. P. (1978) Chimaera studies on the origin and formation of the pectoral musculature of the avian embryo. J. Exp. Zool. 205, 321–326.PubMedCrossRefGoogle Scholar
  14. 14.
    Lance-Jones, C. (1988) The somitic level of origin of embryonic chick hindlimb muscles. Dev. Biol. 126, 394–407.PubMedCrossRefGoogle Scholar
  15. 15.
    Schramm, C. and Solursh, M. (1990) The formation of premuscle masses during chick wing bud development. Anat. Embryol. 182, 235–247.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhi, Q., Huang, R., Christ, B., and Brand-Saberi, B. (1996) Participation of individual brachial somites in skeletal muscles of the avian distal wing. Anat. Embryol. 194, 327–339.PubMedCrossRefGoogle Scholar
  17. 17.
    Ohki-Hamazaki, H., Katsumata, T., Tsuakamoto, Y., Wada, N., and Kimura, I. (1997) Control of the limb bud outgrowth in the quail-chick chimera. Dev. Dyn. 208, 85–91.PubMedCrossRefGoogle Scholar
  18. 18.
    Montagna, W. (1945) A re-investigation of the development of the wing of the fowl. J. Morphol. 76, 87–113.CrossRefGoogle Scholar
  19. 19.
    Shubin, N. H. and Alberch, P. (1986) A morphogenetic approach to the origin and basic organization of the tetrapod limb. Evol. Biol. 20, 319–387.Google Scholar
  20. 20.
    Müller, G. B. a. S., Jr. (1989) Ontogeny of the syndesmosis tibiofibularis and the evolution of the bird hindlimb: A caenogenetic feature triggers phenotypic novelty. Anat. Embryol. 179, 327–339.PubMedCrossRefGoogle Scholar
  21. 21.
    Hampé, A. (1960) La compétition entre les éléments osseux du zeugopode de Poulet. J. Embryol. Exp. Morphol. 8, 241–245.PubMedGoogle Scholar
  22. 22.
    Stark, R. J. and Searls, R. L. (1973) A description of chick wing bud development and a model of limb morphogenesis. Dev. Biol. 33, 138–153.PubMedCrossRefGoogle Scholar
  23. 23.
    Hamburger, V. (1973) A Manual of Experimental Embryology. University of Chicago Press, Chicago, IL.Google Scholar
  24. 24.
    Tuan, R. S. (1983) Supplemented eggshell restores calcium transport in chorioallantoic membrane of cultured shell-less chick embryos. J. Embryol. Exp. Morphol. 74, 119–131.PubMedGoogle Scholar
  25. 25.
    Tuan, R. S. and Ono, T. (1986) Regulation of extraembryonic calcium mobilization by the developing chick embryo. J. Embryol. Exp. Morphol. 97, 63–74.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Elizabeth E. LeClair
    • 1
  • Rocky S. Tuan
    • 2
  1. 1.Department of Cell and Developmental Biology, School of MedicineUniversity of PennsylvaniaPhiladelphia
  2. 2.Department of Orthopaedic SurgeryThomas Jefferson UniversityPhiladelphia

Personalised recommendations