Skip to main content

Use of Electron Microscopy in the Detection of Adrenergic Receptors

  • Protocol
Adrenergic Receptor Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 126))

Abstract

Adrenergic receptors (ARs) belong to a superfamily of the G-protein-coupled receptors and are categorized by their binding to endogenously occurring catecholamines, i.e., norepinephrine and epinephrine. Adrenergic receptors are classified into three groups (α1-, α2-, and β-ARs), each of which is further divided into three subtypes. The α1- (α1A-, α1B-, and α1D-ARs) couple with Gq family of G-proteins (G11, G14, G15, and G16) and result in activation of phospholipase C-βs that liberate two second messengers, diacylglycerol and inositol-1,4,5-trisphosphate. The three subtypes of α2-ARs are designated α2A-, α2B-, and α2C-AR. On binding with agonists, α2-AR inhibit adenylyl cyclase and calcium channels, but activate potassium channels through coupling to the Gi family of G-proteins (Gi1, Gi2, Gi3, and Go). Finally, the three groups of β-AR are designated β1-, β2-, and β3-AR: these increase the intracellular cAMP content by activating Gs, which is coupled to the enzyme, adenylyl cyclase (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strader, C. D., Fong, T. M., Graziano, M. P., and Tota, M. R. (1995) The family of G-protein-coupled receptors. FASEB J. 9, 745–754.

    PubMed  CAS  Google Scholar 

  2. Rohrer, D. K. and Kobilka, B. K. (1998) Insights from in vivo modification of adrenergic receptor gene expression. Annu. Rev. Pharmacol. Toxicol. 38, 351–373.

    Article  PubMed  CAS  Google Scholar 

  3. Aoki, C., Go, C. G. Venkatesan, C., and Kurose, H. (1994) Perikaryal and synaptic localization of α2A-adrenergic receptor immunoreactivity in brain as revealed by light and electron microscopic immunocytochemistry. Brain Res. 650, 181–204.

    Article  PubMed  CAS  Google Scholar 

  4. Kalsner, S. and Westfall, T. C. (1990) Presynaptic receptors and the question of autoregulation of neurotransmitter release, Ann. NY Acad. Sci. 604, 652.

    Google Scholar 

  5. Venkatesan, C., Kurose, H., and Aoki, C. (1996) Cellular and subcellullar distribution of α2A-adrenergic receptor in the visual cortex of neonatal and adult rats. J. Comp. Neurol. 365, 79–95.

    Article  PubMed  CAS  Google Scholar 

  6. Aoki, C. (1998) Cellular and subcellular sites for noradrenergic action in the monkey dorsolateral prefrontal cortex as revealed by the immunocytochemical localization of noradrenergic receptors and axons. Cereb. Cortex 8, 269–277.

    Article  PubMed  CAS  Google Scholar 

  7. Milner, T. A., Lee, A., Aicher, S., and Rosin, D. L. (1998) Hippocampal α2A-adrenergic receptors are located predominantly presynaptically but are also found postsynaptically and in selective astrocytes. J. Comp. Neurol. 395, 310–327.

    Article  PubMed  CAS  Google Scholar 

  8. McCormick, D. A., Pape, H. C., and Williamson, A. (1991) Actions of norepinephrine in the cerebral cortex and thalamus: implications for function of the central noradrenergic system. Prog. Brain Res. 88, 293–305.

    Article  PubMed  CAS  Google Scholar 

  9. Strader, C. D., Picke, V. M., Joh, T. H., Strohsacker, M. W., Shorr, Lefkowitz, R. J., and et al. (1983) Antibodies to the beta-adrenergic receptor: attenuation of catecholamine-sensitive adenylate cyclase and demonstration of postsynaptic receptor localization in brain, Proc. Natl. Acad. Sci USA 80, 1840–1844.

    Article  PubMed  CAS  Google Scholar 

  10. Aoki, T. H., Joh, and Pickel, V. M. (1987) Ultrastructural localization of immunoreactivity for β-adrenergic receptors in the cortex and neostriatum of rat brain. Brain Res. 437, 264–282.

    Article  PubMed  CAS  Google Scholar 

  11. Aoki, C., Zemcik, Z. A., Strader, C. D., and Pickel, V. M. (1989) Cytoplasmic loop of β-adrenergic receptors: synaptic and intracellular localization and relation to catecholaminergic neurons in the nuclei of the solitary tracts. Brain Res. 493, 331–347.

    Article  PubMed  CAS  Google Scholar 

  12. Aoki, C. and Pickel, V. M. (1990) Ultrastructural immunocytochemical evidence for presynaptic localization of beta-adrenergic receptors in the striatum and cerebral cortex of rat brain. Ann NY Acad Sci. 604, 582–585.

    Article  Google Scholar 

  13. Aoki, C. (1992). C-terminal fragment of β-adrenergic receptors: astrocytic localization in the visual cortex and their relation to catecholamine axon terminals, J. Neurosci. 12, 781–792.

    PubMed  CAS  Google Scholar 

  14. Aoki, C. and Pickel, V. M. (1992) Ultrastructural relations between β-adrenergic receptors and catecholaminergic neurons, Brain Res. Bull. 29, 257–264.

    Article  PubMed  CAS  Google Scholar 

  15. Aoki, C. and Pickel, V. M. (1992) C-terminal tail of beta-adrenergic receptors: immunocytochemical localization within astrocytes and their relation to catecholaminergic neurons in the N. tractus solitarii and area postrema, Brain Res. 571, 35–49.

    Article  PubMed  CAS  Google Scholar 

  16. Aoki, C., Lubin, M., and Fenstemaker, F. (1994) Columnar activity regulates astrocytic β-adrenergic receptor-like immunoreactivity in V1 of adult monkeys. Vis. Neurosci. 11, 179–187.

    Article  PubMed  CAS  Google Scholar 

  17. Aoki, C. (1997) Differential timing for the appearance of neuronal and astrocytic beta-adrenergic receptors in the developing rat visual cortex as revealed by light and electron-microscopic immunocytochemistry. Vis. Neurosci. 14, 1129–1142.

    Article  PubMed  CAS  Google Scholar 

  18. Susulic, V. S., Frederich, R. C., Lawitts, J., Tozzo, E., Kahn, B. B., Harper, M.-E., et al. (1995) Targeted disruption of the β3-adrenergic receptor gene. J. Biol. Chem. 270, 29,483–29,492.

    Article  PubMed  CAS  Google Scholar 

  19. Rohrer, D. K., Desai, K. H., Jasper, J. R., Stevens, M. E., Regula, D. P., Jr., Barsh, G. S., et al. (1996) Targeted disruption of the mouse beta1-adrenergic receptor gene: developmental and cardiovascular effects. Proc. Natl. Acad. Sci. USA 93, 7375–7380.

    Article  PubMed  CAS  Google Scholar 

  20. Jurevicus, J. and Fischmeister, R. (1996) cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channel by β-adrenergic agonists. Proc. Natl. Acad. Sci. USA 93, 295–299.

    Article  Google Scholar 

  21. von Zastrow, M., Link, R., Daunt, D., Barsh, G., and Kobilka, B. K. (1993) Subtype-specific differences in the intracellular sorting of G-protein-coupled receptors. J. Biol. Chem. 268, 763–766.

    Google Scholar 

  22. Hirasawa, A., Sugawara, T., Awaji, T., Tsumaya, K., Ito, H., and Tsujimoto, G. (1998) Subtype-specific differences in subcellular localization and chlorethylclonidine (CEC) inactivation of α1-adrenoceptors (ARs): CEC alkylates only the accessible cell surface α1-ARs irrespective of the subtypes. Mol. Pharmacol. 52, 764–770.

    Google Scholar 

  23. Fuxe, K. and Agnati, L. F. (eds.) Volume Transmission in the Brain: Novel Mechanisms for Neural Transmission. Raven, New York.

    Google Scholar 

  24. King, L. C., Lechan, R. M., Kugel, G., and Anthony, E. L. P. (1983) Acrolein: a fixative for immunocytochemical localization of peptides in the central nervous system, J. Histochem. Cytochem. 31, 62–68.

    PubMed  CAS  Google Scholar 

  25. Sitte, H. (1996) Advanced instrumentation and methodology related to cryoultramicrotomy: a review. Scanning Microsc. 10 (Suppl.), 387–463.

    CAS  Google Scholar 

  26. Liou, W., Geuze, H. J., and Slot, J. W. (1996) Improving structural integrity of cryosections for immunogold labeling. Histochem. Cell Biol. 106, 41–58.

    Article  PubMed  CAS  Google Scholar 

  27. Eldred, W. D., Zucker, C., Karten, H. J., and Yazula, S. (1983) Comparison of fixation and penetration enhancement techniques for use in ultrastructural immunocytochemistry, J. Histochem. Cytochem. 31, 285–292.

    PubMed  CAS  Google Scholar 

  28. Aoki, C., Starr, A., Kaneko, T., and Pickel, V. M. (1991) Identification of mitochondrial and non-mitochondrial glutaminase within select neurons and glia of rat forebrain by electron microscopic immunocytochemistry. J. Neurosci. Res. 28, 531–548.

    Article  PubMed  CAS  Google Scholar 

  29. Erisir, A. and Aoki, C. (1998) Combined use of biocytin with avidin–biotin peroxidase for dual pre-embedding electron microscopy. J. Neurosci. Methods 81, 189–197.

    Article  PubMed  CAS  Google Scholar 

  30. Sesack, S. R., Aoki, C., and Pickel, V. M. (1994) Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. J. Neurosci. 14, 88–106.

    PubMed  CAS  Google Scholar 

  31. Wouterlood, F. G. and Jorritsma-Byham, B. (1993) The anterograde neuroanatomical tracer biotinylated dextran-amine: comparison with the tracer Phaseolus vulgaris-leucoagglutinin in preparations for electron microscopy. J. Neurosci. Methods 48, 75–87.

    Article  PubMed  CAS  Google Scholar 

  32. Baude, A., Molnar, E., Latawiec, D., McIlhinney, R. A. J., and Somogyi, P. (1994) Synaptic and nonsynaptic localization of the GluR1 subunit of the AMPA-type excitatory amino acid receptor in the rat cerebellum. J. Neurosci. 14, 2830–2843.

    PubMed  CAS  Google Scholar 

  33. Bernard, V., Somogyi, P., and Bolam, J. P. (1997) Cellular, subcellular and subsynaptic distribution of AMPA-type glutamate receptor subunits in the neostriatum of the rat. J. Neurosci. 17, 819–833.

    PubMed  CAS  Google Scholar 

  34. Raman I. M., Tong, G., and Jahr, C. E. (1996) Beta-adrenergic regulation of synaptic NMDA receptors by cAMP-dependent protein kinase. Neuron 16, 415–421.

    Article  PubMed  CAS  Google Scholar 

  35. He, Y., Janssen, W. G. M., Vissavajjhala, P., and Morrison, J. H. (1998) Synaptic distribution of GluR2 in hippocampal GABAergic interneurons and pyramidal cells: a double-label immunogold analysis. Exp. Neurol. 150, 1–13.

    Article  PubMed  CAS  Google Scholar 

  36. Kharazia, V. N., Phend, K. D., Rustioni, A., and Weinberg, R. J. (1996) EM localization of AMPA and NMDA receptor subunits at synapses in rat cerebral cortex. Neurosci Lett. 210, 37–40.

    Article  PubMed  CAS  Google Scholar 

  37. Phend, K. D., Rustioni, A., and Weinberg, R. J. (1995) An osmium-free method of Epon embedment that preserves both ultrastructure and antigenicity for post-embedding immunocytochemistry. J. Histochem. Cytochem. 43, 283–292.

    PubMed  CAS  Google Scholar 

  38. Rubio, M. E. and Wenthold, R. J. (1997) Glutamate receptors are selectively targeted to postsynaptic sites in neurons. Neuron 18, 939–950.

    Article  PubMed  CAS  Google Scholar 

  39. Wang, Y.-X., Wenthold, R. J., Ottersen, O. P., and Petralia, R. S. (1998) Endbulb synapses in the anteroventral cochlear nucleus express a specific subset of AMPA-type glutamate receptor subunits. J. Neurosci. 18, 1148–1160.

    PubMed  CAS  Google Scholar 

  40. Veznedaroglu, E. and Milner, T. A. (1992) Elimination of artifactual labeling of hippocampal mossy fibers seen following preembedding immunogold-silver technique by pretreatment with zinc chelator. J. Microsc. Res. Tech. 23, 100, 101.

    Article  CAS  Google Scholar 

  41. Yasukawa, T., Kanei-Ishii, C., Maekawa, T., Fujimoto, J., Yamamoto, T., and Ishii, S. (1995) Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin. J. Biol. Chem. 270, 25,328–25,331.

    Article  PubMed  CAS  Google Scholar 

  42. LaVallie, E. R., DiBlasio, E. A., Kovacic, S., Grant, K. L., Schendel, P. F., and McCoy, J. M. (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology 11, 187–193.

    Article  PubMed  CAS  Google Scholar 

  43. Frangioni, J. V. and Neel, B. G. (1993) Solubilization and purification of enzy-matically active glutathione S-transferase (pGEX) fusion proteins. Anal. Biochem. 210, 179–187.

    Article  PubMed  CAS  Google Scholar 

  44. Pickel, V. M., Chan, J., and Aoki, C. (1993) Electron microscopic immunocy-tochemical labeling of endogenous and/or transported antigens in rat brain using silver-intensified one-nanometre colloidal gold, in Immunohistochemistry II (Cuello, A. C., ed.) John Wiley, New York, pp. 265–280.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Aoki, C., Rodrigues, S., Kurose, H. (2000). Use of Electron Microscopy in the Detection of Adrenergic Receptors. In: Machida, C.A. (eds) Adrenergic Receptor Protocols. Methods in Molecular Biology™, vol 126. Humana Press. https://doi.org/10.1385/1-59259-684-3:535

Download citation

  • DOI: https://doi.org/10.1385/1-59259-684-3:535

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-602-4

  • Online ISBN: 978-1-59259-684-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics