Nuclear Run-On Assays for Measurement of Adrenergic Receptor Transcription Rate

  • Zhuo-Wei Hu
  • Brian B. Hoffman
Part of the Methods in Molecular Biology™ book series (MIMB, volume 126)


The functionally diverse group of G-protein-coupled receptors (GPCRs) is a superfamily of membrane receptors. They include receptors for many different signaling molecules, such as peptide and nonpeptide hormones, neurotransmitters, chemokines, prostanoids, and proteinases. The principal function of GPCRs is to transmit information about the extracellular environment to the interior of the cell by interacting with the heterotrimeric G-proteins and, thereby, participate in regulation of many cellular functions. In view of their major importance, it is not surprising that GPCR-mediated responses are subject to dynamic regulation by a number of mechanisms. These regulatory mechanisms have important roles in fine-tuning signals from multiple receptor signaling pathways. Multiple mechanisms contribute to the regulation of GPCRs and their transmembrane signaling. Posttranslational modifications of the receptors, such as phosphorylation, may modulate receptor function; in addition, changes in receptor gene expression can lead to alterations in sensitivity and responsiveness of cells to various signaling molecules (1, 2, 3).


Sodium Dodecyl Sulfate Adrenergic Receptor Isoamyl Alcohol Active Nucleus Standard Saline Citrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bohm, S. K., Grady, E. F., and Bunnett, N. W. (1997) Regulatory mechanisms that modulate signalling by G-protein-coupled receptors. Biochem. J. 322, 1–18.PubMedGoogle Scholar
  2. 2.
    Ferguson, S. S. and Caron, M. G. (1998) G protein-coupled receptor adaptation mechanisms. Semin. Cell. Dev. Biol. 9, 119–127.PubMedCrossRefGoogle Scholar
  3. 3.
    Collins, S., Caron, M. G., and Lefkowitz, R. J. (1992) From ligand binding to gene expression: new insights into the regulation of G-protein-coupled receptors. Trends Biochem. Sci. 17, 37–39.PubMedCrossRefGoogle Scholar
  4. 4.
    Scanga, D. R. and Schwinn, D. A. (1998) Transcriptional regulation of alpha-1 adrenergic receptors. Front Biosci. 3, d348–353.PubMedGoogle Scholar
  5. 5.
    Heck, D. A. and Bylund, D. B. (1998) Differential down-regulation of alpha-2 adrenergic receptor subtypes. Life Sci. 62, 1467–1472.PubMedCrossRefGoogle Scholar
  6. 6.
    Lohse, M. J., Engelhardt, S., Danner, S., and Bohm, M. (1996) Mechanisms of beta-adrenergic receptor desensitization: from molecular biology to heart failure. Basic Res. Cardiol. 91(Suppl. 2), 29–34.PubMedCrossRefGoogle Scholar
  7. 7.
    Collins, S., Altschmied, J., Herbsman, O., Caron, M. G., Mellon, P. L., and Lefkowitz, R. J. (1990) A cAMP response element in the beta 2-adrenergic receptor gene confers transcriptional autoregulation by cAMP. J. Biol. Chem. 265, 19,330–19,335.PubMedGoogle Scholar
  8. 8.
    Sakaue, M. and Hoffman, B. B. (1991) cAMP regulates transcription of the alpha 2A adrenergic receptor gene inHT-29 cells. J. Biol. Chem. 266, 5743–5749.PubMedGoogle Scholar
  9. 9.
    McGraw, D. W., Chai, S. E., Hiller, F. C., and Cornett, L. E. (1995) Regulation of the beta 2-adrenergic receptor and its mRNA in the rat lung by dexamethasone. Exp. Lung Res. 21, 535–546.PubMedCrossRefGoogle Scholar
  10. 10.
    Thomas, R. F., Holt, B. D., Schwinn, D. A., and Liggett, S. B. (1992) Long-term agonist exposure induces upregulation of beta 3-adrenergic receptor expression via multiple cAMP response elements. Proc. Natl. Acad. Sci. USA 89, 4490–4494.PubMedCrossRefGoogle Scholar
  11. 11.
    Sakaue, M. and Hoffman, B. B. (1991) Glucocorticoids induce transcription and expression of the alpha 1B adrenergic receptor gene in DTT1 MF-2 smooth muscle cells. J. Clin. Invest. 88, 385–389.PubMedCrossRefGoogle Scholar
  12. 12.
    Kiely, J., Hadcock, J. R., Bahouth, S. W., and Malbon, C. C. (1994) Glucocorticoids down-regulate beta 1-adrenergic-receptor expression by suppressing transcription of the receptor gene. Biochem. J. 302, 397–403.PubMedGoogle Scholar
  13. 13.
    Hu, Z. W., Shi, X. Y., and Hoffman, B. B. (1996) Insulin and insulin-like growth factor I differentially induce alpha1-adrenergic receptor subtype expression in rat vascular smooth muscle cells. J. Clin. Invest. 98, 1826–1834.PubMedCrossRefGoogle Scholar
  14. 14.
    Gong, G., Johnson, M. L., and Pettinger, W. A. (1995) Testosterone regulation of renal alpha 2B-adrenergic receptor mRNA levels. Hypertension 25, 350–355.PubMedGoogle Scholar
  15. 15.
    Devedjian, J. C., Fargues, M., Denis-Pouxviel, C., Daviaud, D., Prats, H., and Paris, H. (1991) Regulation of the alpha 2A-adrenergic receptor in the HT29 cell line. Effects of insulin and growth factors. J. Biol. Chem. 266, 14,359–14,366.PubMedGoogle Scholar
  16. 16.
    Hu, Z.-W., Shi, X.-Y., Okazaki, M., and Hoffman, B. B. (1995) Angiotensin II induces transcription and expression of alpha1 adrenergic receptors in cultured rat vascular smooth muscle cells. Am. J. Physiol. 268, H1006–1014.PubMedGoogle Scholar
  17. 17.
    Greenberg, M. E. and Bender, T. P. (1997) Identification of newly transcribed RNA, in Current Protocols in Molecular Biology, (Ausubel, F. M., et al., eds.), John Wiley, New York, pp. 4.10.1–4.10.11.Google Scholar
  18. 18.
    Hattori, M., Tugores, A., Veloz, L., Karin, M., and Brenner, D. A. (1990) A simplified method for the preparation of transcriptionally active liver nuclear extracts. DNA Cell. Biol. 9, 777–781.PubMedCrossRefGoogle Scholar
  19. 19.
    Merscher, S., Hanselmann, R., Welter, C., and Dooley, S. (1994) Nuclear runoff transcription analysis using chemiluminescent detection. Biotechniques 16, 1024–1026.PubMedGoogle Scholar
  20. 20.
    Haley, J. D. and Waterfield, M. D. (1991) Contributory effects of de novo transcription and premature transcript termination in the regulation of human epidermal growth factor receptor proto-oncogene RNA synthesis. J. Biol. Chem. 266, 1746–1753.PubMedGoogle Scholar
  21. 21.
    Kindy, M. S., McCormack, J. E., Buckler, A. J., Levine, R. A., and Sonenshein, G. E. (1987) Independent regulation of transcription of the two strands of the c-myc gene. Mol. Cell. Biol. 7, 2857–2862.PubMedGoogle Scholar
  22. 22.
    Sell, C., Chen, H. M., and Baserga, R. (1992) A simple method to generate single-stranded probes for run-on transcription assays. Biotechniques 12, 692–694.PubMedGoogle Scholar
  23. 23.
    Fei, H. and Drake, T. A. (1993) A rapid nuclear runoff transcription assay. Biotechniques 15, 838.PubMedGoogle Scholar
  24. 24.
    Celano, P., Berchtold, C., and Casero, R. A. Jr. A simplification of the nuclear run-off transcription assay. Biotechniques 7, 942–944.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Zhuo-Wei Hu
    • 1
    • 2
  • Brian B. Hoffman
    • 1
    • 2
  1. 1.Division of Endocrinology, Gerontology, and Metabolism, Department of MedicineVA Palo Alto Health Care SystemsPalo Alto
  2. 2.Department of MedicineStanford University School of MedicineStanford

Personalised recommendations