Skip to main content

Preparation of Chromatin Assembly Extracts from Xenopus Oocytes

  • Protocol
  • 2042 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 119))

Abstract

The majority of DNA in eukaryotic cells is packaged by histones and many poorly characterized nonhistone proteins to form a dynamic structure known as chromatin. Chromatin is a periodic structure made up of repeating, regularly spaced subunits, the nucleosomes. Elegant genetic experiments have clearly demonstrated that histones play a central role in transcriptional control (1). Moreover, histones, via protein-protein interactions or by playing an architectural role, can facilitate or inhibit the transcriptional activation process (1,2). It also appears that the function of histones themselves may be regulated by protein modifications and therefore may be targets for cell signaling pathways (3,4).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Grunstein, M., Hecht, A., Fisher-Adams, G., Wan, J., Mann, R. K., Strahl-Bolsinger S, Laroche, T., and Gasser, S. (1995) The regulation of euchromatin and heterochromatin by histones in yeast. J. Cell Sci. 19, 29–36.

    CAS  Google Scholar 

  2. Wolffe, A. P. (1994) Architectural transcription factors. Science 264, 1100,1101.

    Article  PubMed  CAS  Google Scholar 

  3. Wade, P. and Wolffe, A. P. (1997) Histone acetyltransferases in control. Curr. Biol. 7, 82–84.

    Article  Google Scholar 

  4. Roth, S. Y. and Allis, C. D. (1996) Histone acetylation and chromatin assembly: a single escort, multiple dances? Cell 87, 5–8.

    Article  PubMed  CAS  Google Scholar 

  5. Workman, J. L. and Buchmann, A. R. (1993) Multiple functions of nucleosomes and regulatory functions in transcription. Trends Biochem. Sci. 18, 90–95.

    Article  PubMed  CAS  Google Scholar 

  6. Becker, P. B. (1994) The establishment of active promoters in chromatin. BioEssays 16, 541–547.

    Article  PubMed  CAS  Google Scholar 

  7. Lu, Q., Wallrath, L. L., and Elgin, S. C. R. (1994) Nucleosome positioning and gene regulation. J. Cell. Biochem. 55, 83–92.

    Article  PubMed  CAS  Google Scholar 

  8. Edmonson, D. G. and Roth, S. Y. (1996) Chromatin and transcription. FASEB J. 10, 1173–1182.

    Google Scholar 

  9. Wolffe, A. P. and Pruss, D. (1996) Deviant nucleosomes: the functional specialisation of chromatin. Trends Genetics 12, 58–62.

    Article  CAS  Google Scholar 

  10. Tremethick, D. J. and Frommer, M. (1992) Partial purification, from Xenopus laevis oocytes, of an ATP-dependent activity required for nucleosome spacing in vitro. J. Biol. Chem. 267, 15,041–15,048.

    PubMed  CAS  Google Scholar 

  11. Shimamura, A., Tremethick, D., and Worcel, A. (1988) Characterisation of the repressed 5S DNA minichromosomes assembled in vitro with a high speed supernatant of Xenopus laevis oocytes. Mol. Cell. Biol. 8, 4257–4269.

    PubMed  CAS  Google Scholar 

  12. Almouzni, G., Mechali, M., and Wolffe, A. P. (1990) Competition between transcription complex assembly and chromatin assembly on replicating DNA. EMBO J. 9, 573–581.

    PubMed  CAS  Google Scholar 

  13. Tsukiyama, T., Becker, P. B., and Wu, C. (1994) ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367, 525–532.

    Article  PubMed  CAS  Google Scholar 

  14. Kamakaka, R., Bulger, M., and Kadonaga, J. T. (1993) Potentiation of RNA polymerase II transcription by Gal 4-VP 16 during but not after DNA replication and chromatin assembly. Genes Dev. 7, 1779–1795.

    Article  PubMed  CAS  Google Scholar 

  15. Wolffe, A. P. (1991) Xenopus transcription factors: key molecules in the developmental regulation of differential gene expression. Biochem. J. 278, 313–324.

    PubMed  CAS  Google Scholar 

  16. Glikin, G. C., Ruberti, I., and Worcel, A. (1984) Chromatin assembly in Xenopus oocytes: in vitro studies. Cell 37, 33–41.

    Article  PubMed  CAS  Google Scholar 

  17. Ito, T., Bulger, M., Pazin, M. J., Kobayashi, R., and Kadonaga, J. T. (1997) ACF, an ISWI-containing and ATP-utilising chromatin assembly and remodelling factor. Cell 90, 145–155.

    Article  PubMed  CAS  Google Scholar 

  18. Varga-Weisz, P. D., Wilm, M., Bonte, E., Dumas, K., and Becker, P. B. (1997) Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388, 598–602.

    Article  PubMed  CAS  Google Scholar 

  19. Tremethick, D., Zucker, K., and Worcel, A. (1990) The transcription complex of the 5 S RNA gene but not Transcription Factor IIIA alone, prevents nucleosomal repression of transcription. J. Biol. Chem. 265, 5014–5023.

    PubMed  CAS  Google Scholar 

  20. Kleinschmidt, J. A. and Seiter, A. (1988) Soluble acidic complexes containing histones H3 and H4 in nuclei in Xenopus laevis oocytes. Cell 29, 799–809.

    Article  Google Scholar 

  21. Ng, K. W., Ridgway, P., Cohen, D. R., and Tremethick, D. J. (1997) The binding of a fos/jun heterodimer can completely disrupt the structure of a nucleosome. EMBO J. 16, 2072–2085.

    Article  PubMed  CAS  Google Scholar 

  22. Dignam, J. D., and Lebovitz, R. M., and Roeder, R. G. (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489.

    Article  PubMed  CAS  Google Scholar 

  23. Drew, H. R. and Calladine, C. R. (1987) Sequence-specific positioning of core histones on an 860 base-pair DNA. J. Mol. Biol. 195, 143–173.

    Article  PubMed  CAS  Google Scholar 

  24. Tremethick, D. J. (1994) High mobility group proteins 14 and 17 can space nucleosomal particles deficient in histones H2A and H2B creating a template that is transcriptional active. J. Biol. Chem. 269, 28,436–28,442.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Tremethick, D.J. (1999). Preparation of Chromatin Assembly Extracts from Xenopus Oocytes. In: Becker, P.B. (eds) Chromatin Protocols. Methods in Molecular Biology™, vol 119. Humana Press. https://doi.org/10.1385/1-59259-681-9:175

Download citation

  • DOI: https://doi.org/10.1385/1-59259-681-9:175

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-665-9

  • Online ISBN: 978-1-59259-681-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics