Mapping of Nucleosome Positions in Yeast

  • Magdalena Livingstone-Zatchej
  • Fritz Thoma
Part of the Methods in Molecular Biology™ book series (MIMB, volume 119)


The structural and functional subunits of chromatin are nucleosome cores. In a nucleosome core 145 bp of DNA are coiled around the outer surface of an octamer of histone proteins which consists of a tetramer of 2(H3·H4) and two H2A·H2B dimers (1). DNA extending from the nucleosome core to the next nucleosome is called linker DNA. It varies in length from about 20 to 90 bp in different organisms or tissues or between individual nucleosomes. Histone H1 may be associated with linker DNA at the site where the DNA leaves the nucleosome. While core histones are well conserved and present in all eukaryotic organisms, H1 is most variable and may even be missing in some organisms such as yeast Saccharomyces cerevisiae. Nucleosomes are built from many different DNA sequences and may contain histone variants (subtypes) and modified histones (e.g., acetylated) which can affect their structural and dynamic properties (reviewed in ref. 2).


Nucleosome Position Nucleosome Core Rotational Setting SS34 Rotor Stop Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260.PubMedCrossRefGoogle Scholar
  2. 2.
    Wolffe, A. (1995) Chromatin. Academic Press, San Diego, CA.Google Scholar
  3. 3.
    Simpson, R. T. (1991) Nucleosome positioning: occurrence, mechanisms, and functional consequences. Prog. Nucleic Acid Res. Mol. Biol. 40, 143–184.PubMedCrossRefGoogle Scholar
  4. 4.
    Thoma, F. (1992) Nucleosome positioning. Biochimica et Biophysica Acta 1130, 1–19.PubMedGoogle Scholar
  5. 5.
    Thoma, F. (1996) Mapping of nucleosome positions. Methods Enzymol. 274, 197–214.PubMedCrossRefGoogle Scholar
  6. 6.
    Bellard, M., Dretzen, G., Giangrande, A., and Ramain, P. (1989) Nuclease digestion of transcriptionally active chromatin. Methods Enzymol. 170, 317–346.PubMedCrossRefGoogle Scholar
  7. 7.
    Noll, M. and Kornberg, R. D. (1977) Action of micrococcal nuclease on chromatin and the location of histone H1. J. Mol. Biol. 109, 393–404.PubMedCrossRefGoogle Scholar
  8. 8.
    Thoma, F., Bergman, L. W., and Simpson, R. T. (1984) Nuclease digestion of circular TRP1ARS1 chromatin reveals positioned nucleosomes separated by nuclease sensitive regions. J. Mol. Biol. 177, 715–733.PubMedCrossRefGoogle Scholar
  9. 9.
    Lutter, L. C. (1979) Precise location of DNaseI cutting sites in the nucleosome core determined by high resolution gel electrophoresis. Nucleic Acids. Res. 6, 41–55.PubMedCrossRefGoogle Scholar
  10. 10.
    Cartwright, I. L. and Elgin, S. C. R. (1989) Nonenzymatic cleavage of chromatin. Methods Enzymol. 170, 359–369.PubMedCrossRefGoogle Scholar
  11. 11.
    Wu, C. (1980) The 5′ends of Drosophila heat shock genes in chromatin are hypersensitive to DNaseI. Nature 286, 854–860.PubMedCrossRefGoogle Scholar
  12. 12.
    Nedospasov, S. A. and Georgiev, G. P. (1980) Non-random cleavage of SV-40 DNA in the compact minichromosome and free in solution by micrococcal nuclease. Biochem. Biophys. Res. Commun. 92, 532–539.PubMedCrossRefGoogle Scholar
  13. 13.
    Wu, C. (1989) Analysis of hypersensitive sites in chromatin. Methods Enzymol. 170, 269–289.PubMedCrossRefGoogle Scholar
  14. 14.
    Nedospasov, S. A., Shakhov, A. N., and Georgiev, G. P. (1989) Analysis of nucleosome positioning by indirect end-labeling and molecular cloning. Methods Enzymol. 170, 408–420.PubMedCrossRefGoogle Scholar
  15. 15.
    Thoma, F. and Simpson, R. T. (1985) Local protein-DNA interactions may determine nucleosome positions on yeast plasmids. Nature 315, 250–252.PubMedCrossRefGoogle Scholar
  16. 16.
    Thoma, F. (1986) Protein-DNA interactions and nuclease sensitive regions determine nucleosome positions on yeast plasmid chromatin. J. Mol. Biol. 190, 177–190.PubMedCrossRefGoogle Scholar
  17. 17.
    Losa, R., Omari, S., and Thoma, F. (1990) Poly(dA)′poly(dT) rich sequence are not sufficient to exclude nucleosome formation in a constitutive yeast promoter. Nucleic Acids Res. 18, 3495–3502.PubMedCrossRefGoogle Scholar
  18. 18.
    Bernardi, F., Zatchej, M., and Thoma, F. (1992) Species specific protein-DNA interactions may determine the chromatin units of genes in S. cerevisiae and in S. pombe. EMBO J. 11, 1177–1185.PubMedGoogle Scholar
  19. 19.
    Thoma, F. and Zatchej, M. (1988) Chromatin folding modulates nucleosome positioning in yeast minichromosomes. Cell 55, 945–953.PubMedCrossRefGoogle Scholar
  20. 20.
    Tanaka, S., Halter, D., Livingstone-Zatchej, M., Reszel, B., and Thoma, F. (1994) Transcription through the yeast origin of replication ARS1 ends at the ABFI binding site and affects extrachromosomal maintenance of minichromosomes. Nucleic Acids Res. 22, 3904–3910.PubMedCrossRefGoogle Scholar
  21. 21.
    Pederson, D. S., Venkatesan, M., Thoma, F., and Simpson, R. T. (1986) Isolation of an episomal yeast gene and replication origin as chromatin. Proc. Natl. Acad. Sci. USA 83, 7206–7210.PubMedCrossRefGoogle Scholar
  22. 22.
    Lohr, D. (1984) Organization of the GAL1-GAL10 intergenic control region chromatin. Nucleic Acids Res. 12, 8457–8474.PubMedCrossRefGoogle Scholar
  23. 23.
    Almer, A., Rudolph, H., Hinnen, A., and Hörz, W. (1986) Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 5, 2689–2696.PubMedGoogle Scholar
  24. 24.
    Buttinelli, M., DiMauro, E. D., and Negri, R. (1993) Multiple nucleosome positioning with unique rotational setting for the Saccharomyces cerevisiae 5S rRNA gene in vitro and in vivo. Proc. Natl. Acad. Sci. USA 90, 9315–9319.PubMedCrossRefGoogle Scholar
  25. 25.
    Tanaka, S., Livingstone-Zatchej, M., and Thoma, F. (1996) Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context. J. Mol. Biol. 257, 919–934.PubMedCrossRefGoogle Scholar
  26. 26.
    Suter, B., Livingstone-Zatchej, M., and Thoma, F. (1997) Chromatin structure modulates DNA repair by photolyase in vivo. EMBO J. 16, 2150–2160.PubMedCrossRefGoogle Scholar
  27. 27.
    Diffley, J. F. X. and Cocker, J. H. (1992) Protein DNA interactions at a yeast replication origin. Nature 357, 169–172.PubMedCrossRefGoogle Scholar
  28. 28.
    Fedor, M. J., Lue, N. F., and Kornberg, R. D. (1988) Statistical positioning of nucleosomes by specific protein-binding to an upstream activating sequence in yeast. J. Mol. Biol. 204, 109–127.PubMedCrossRefGoogle Scholar
  29. 29.
    Cavalli, G. and Thoma, F. (1993) Chromatin transitions during activation and repression of galactose-regulated genes in yeast. EMBO J. 12, 4603–4613.PubMedGoogle Scholar
  30. 30.
    Cavalli, G., Bachmann, D., and Thoma, F. (1996) Inactivation of topoisomerases affect transcription dependent chromatin transitions in rDNA but not in a gene transcribed by RNA-polymerase II. EMBO J. 15, 590–597.PubMedGoogle Scholar
  31. 31.
    Almer, A. and Hörz, W. (1986) Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus. EMBO J. 5, 2681–2687.PubMedGoogle Scholar
  32. 32.
    Bernardi, F., Koller, T., and Thoma, F. (1991) The ade6-gene of the fission yeast Schizosaccharomyces pombe has the same chromatin structure in the chromosome and in plasmids. Yeast 7, 547–558.PubMedCrossRefGoogle Scholar
  33. 33.
    Sherman, F., Fink, G. R., and Hicks, J. B. (1986) Laboratory Course Manual for Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Magdalena Livingstone-Zatchej
    • 1
  • Fritz Thoma
    • 1
  1. 1.Institut für ZellbiologieEidgenossische Technische HochschuleZürichSwitzerland

Personalised recommendations