Skip to main content

Basic Problems of Serological Laboratory Diagnosis

  • Protocol
Book cover Molecular Diagnosis of Infectious Diseases

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 94))

Abstract

Serological laboratory diagnosis of infectious diseases is inflicted with several kinds of basic problems. One difficulty relates to the fact that the serological diagnosis of infectious diseases is double indirect: The first indirect aim in diagnosing an infectious disease is to identify the microbial agent that caused the disease. The second indirect aim is to identify this infectious agent by measuring the patient’s immune response to the potential agent. Thus, the serological test is neither measuring directly disease nor the cause of the disease, but the patient’s immune system. The latter poses another type of problem, because each person’s immune system is unique. The immune response to an infectious agent is usually of polyclonal nature, and the exact physicochemical properties of antibodies are unique for each clone of antibody. The clonal makeup and composition and, therefore, the way an individual’s immune system sees an infectious agent, depends not only on the genetic background of the person but also on the individual experience from former encounters with various infectious agents. In consequence, the reaction of a patient’s serum in an analytical system is not precisely predictable. Also, the antigenic makeup of an infectious agent is not always foreseeable. Antigenic variations leading to different serotypes is a quite common phenomenon. Altogether, these biological problems lead to complexities in selecting the appropriate tests and strategies for testing, in interpreting the results, and in standardizing serological test systems. For that reason, a close collaboration of the laboratory with the clinic is mandatory to avoid erroneous conclusions from serological test results, which might lead to wrong decisions in patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NCCLS (2001) Specifications for Immunological Testing for Infectious Diseases; Approved Guideline-Second Edition, in NCCLS Document I/LA18-A2 (NCCLS, ed.), NCCLS, Wayne, PA, pp. 1–46.

    Google Scholar 

  2. Tosteson, A. N. A., Weinstein, M. C., Wittenberg, J., and Begg, C. B. (1994) ROC curve regression analysis: the use of ordinal regression models for diagnostic test assessment. Environ. Health Perspect. 102, 73–78.

    PubMed  Google Scholar 

  3. Sorribas, A., March, J., and Trujillano, J. (2002) A new parametric method based on S-distributions for computing receiver operating characteristic curves for continuous diagnostic tests. Stat. Med 21, 1213–1235.

    Article  PubMed  Google Scholar 

  4. Dujardin, B., Vandenende, J., Vangompel, A., Unger, J. P., and Vanderstuyft, P. (1994) Likelihood ratios—a real improvement for clinical decision making. Eur. J. Epidemiol. 10, 29–36.

    Article  PubMed  CAS  Google Scholar 

  5. Biggerstaff, B. J. (2000) Comparing diagnostic tests: a simple graphic using likelihood ratios. Stat. Med 19, 649–663.

    Article  PubMed  CAS  Google Scholar 

  6. Choi, B. C. (1998) Slopes of a receiver operating characteristic curve and likelihood ratios for a diagnostic test. Am. J. Epidemiol. 148, 1127–1132.

    PubMed  CAS  Google Scholar 

  7. Choi, B. C. (1997) Causal modeling to estimate sensitivity and specificity of a test when prevalence changes. Epidemiology 8, 80–86.

    Article  PubMed  CAS  Google Scholar 

  8. Brenner, H. and Gefeller, O. (1997) Variation of sensitivity, specificity, likelihood ratios and predictive values with disease prevalence. Stat. Med 16, 981–991.

    Article  PubMed  CAS  Google Scholar 

  9. Vanderschouw, Y. T., Vandijk, R., and Verbeek, A. L. M. (1995) Problems in selecting the adequate patient population from existing data files for assessment studies of new diagnostic tests. J. Clin. Epidemiol. 48, 417–422.

    Article  CAS  Google Scholar 

  10. Broder, C. C., Earl, P. L., Long, D., Abedon, S. T., Moss, B., and Doms, R. W. (1994) Antigenic implications of human immunodeficiency virus type 1 envelope quaternary structure: oligomer-specific and-sensitive monoclonal antibodies. Proc. Natl. Acad. Sci. USA 91, 11,699–11,703.

    Article  PubMed  CAS  Google Scholar 

  11. Dyson, H. J. and Wright, P. E. (1995) Antigenic peptides. FASEB J. 9, 37–42.

    PubMed  CAS  Google Scholar 

  12. Gurunath, R., Beena, T. K., Adiga, P. R., and Balaram, P. (1995) Enhancing peptide antigenicity by helix stabilization. FEBS Lett. 361, 176–178.

    Article  PubMed  CAS  Google Scholar 

  13. Union, A., Meheus, L., Humbel, R. L., et al. (2002) Identification of citrullinated rheumatoid arthritis-specific epitopes in natural filaggrin relevant for antifilaggrin autoantibody detection by line immunoassay. Arthritis Rheum. 46, 1185–1195.

    Article  PubMed  CAS  Google Scholar 

  14. Borza, D. B., Bondar, O., Todd, P., et al. (2002) Quaternary Organization of the Goodpasture autoantigen, the alpha 3(IV) collagen chain. Sequestration of two cryptic autoepitopes by intraprotomer interactions with the alpha 4 and alpha 5 NC1 domains. J. Biol. Chem. 277, 40,075–40,083.

    Article  PubMed  CAS  Google Scholar 

  15. Mukherjee, J., Nussbaum, G., Scharff, M. D., and Casadevall, A. (1995) Protective and nonprotective monoclonal antibodies to Cryptococcus neoformans originating from one B cell. J. Exp. Med. 181, 405–409.

    Article  PubMed  CAS  Google Scholar 

  16. Prentice, L., Kiso, Y., Fukuma, N., et al. (1995) Monoclonal thyroglobulin autoantibodies: Variable region analysis and epitope recognition. J. Clin. Endocrinol. Metab. 80, 977–986.

    Article  PubMed  CAS  Google Scholar 

  17. Lovrich, S. D., Callister, S. M., Lim, L. C. L., Duchateau, B. K., and Schell, R. F. (1994) Seroprotective groups of Lyme borreliosis spirochetes from North America and Europe. J. Infect. Dis. 170, 115–121.

    PubMed  CAS  Google Scholar 

  18. Roost, H. P., Bachmann, M. F., Haag, A., et al. (1995) Early high-affinity neutralizing anti-viral IgG responses without further overall improvements of affinity. Proc. Natl. Acad. Sci. USA 92, 1257–1261.

    Article  PubMed  CAS  Google Scholar 

  19. Foote, J. and Eisen, H. N. (1995) Kinetic and affinity limits on antibodies produced during immune responses. Proc. Natl. Acad. Sci. USA 92, 1254–1256.

    Article  PubMed  CAS  Google Scholar 

  20. Braden, B. C. and Poljak, R. J. (1995) Structural features of the reactions: between antibodies and protein antigens. FASEB J. 9, 9–16.

    PubMed  CAS  Google Scholar 

  21. Yuan, R. R., Casadevall, A., Spira, G., and Scharff, M. D. (1995) Isotype switching from IgG3 to IgG1 converts a nonprotective murine antibody to Cryptococcus neoformans into a protective antibody. J. Immunol. 154, 1810–1816.

    PubMed  CAS  Google Scholar 

  22. Rademacher, T. W., Williams, P., and Dwek, R. A. (1994) Agalactosyl glycoforms of IgG autoantibodies are pathogenic. Proc. Natl. Acad. Sci. USA 91, 6123–6127.

    Article  PubMed  CAS  Google Scholar 

  23. Lund, J., Takahashi, N., Pound, J. D., Goodall, M., Nakagawa, H., and Jefferis, R. (1995) Oligosaccharide protein interactions in IgG can modulate recognition by Fc gamma receptors. FASEB J. 9, 115–119.

    PubMed  CAS  Google Scholar 

  24. Amzel, L. M. and Gaffney, B. J. (1995) Structural immunology: problems in molecular recognition. FASEB J. 9, 7–8.

    PubMed  CAS  Google Scholar 

  25. Guddat, L. W., Shan, L., Fan, Z. C., et al. (1995) Intramolecular signaling upon complexation. FASEB J. 9, 101–106.

    PubMed  CAS  Google Scholar 

  26. Soderlund, M., Brown, C. S., Spaan, W. J., Hedman, L., and Hedman, K. (1995) Epitope type-specific IgG responses to capsid proteins VP1 and VP2 of human parvovirus B19. J. Infect. Dis. 172, 1431–1436.

    PubMed  CAS  Google Scholar 

  27. Manaresi, E., Gallinella, G., Zerbini, M., Venturoli, S., Gentilomi, G., and Musiani, M. (1999) IgG immune response to B19 parvovirus VP1 and VP2 linear epitopes by immunoblot assay. J. Med. Virol. 57, 174–178.

    Article  PubMed  CAS  Google Scholar 

  28. Gray, J. J., Wreghitt, T. G., Mckee, T. A., et al. (1995) Internal quality assurance in a clinical virology laboratory. 1. Internal quality assessment. J. Clin. Pathol. 48, 168–173.

    Article  PubMed  CAS  Google Scholar 

  29. Gray, J. J., Wreghitt, T. G., Mckee, T. A., et al. (1995) Internal quality assurance in a clinical virology laboratory. 2. Internal quality control. J. Clin. Pathol. 48, 198–202.

    Article  PubMed  CAS  Google Scholar 

  30. Mugan, K., Carlson, I. H., and Westgard, J. O. (1994) Planning QC procedures for immunoassays. J. Clin. Immunoassay 17, 216–222.

    Google Scholar 

  31. Dimech, W., Bettoli, A., Eckert, D., et al. (1992) Multicenter evaluation of five commercial rubella virus immunoglobulin G kits which report in international units per milliliter. J. Clin. Microbiol. 30, 633–641.

    PubMed  CAS  Google Scholar 

  32. Place, J. F., Truchaud, A., Ozawa, K., Pardue, H., and Schnipelsky, P. (1994) Use of artificial intelligence in analytical systems for the clinical laboratory. Clin. Chim. Acta 231, S5–S34.

    Article  PubMed  CAS  Google Scholar 

  33. Place, J. F., Truchaud, A., Ozawa, K., Pardue, H., and Schnipelsky, P. (1994) Use of artificial intelligence in analytical systems for the clinical laboratory. Ann. Biol. Clin. Paris 52, 729–743.

    PubMed  CAS  Google Scholar 

  34. Winkel, P. (1994) Artificial intelligence within the chemical laboratory. Ann. Biol. Clin. Paris 52, 277–282.

    PubMed  CAS  Google Scholar 

  35. Winkel, P. (1994) Multivariate analysis and expert systems. Scand. J. Clin. Lab. Invest. 54, 12–24.

    Article  Google Scholar 

  36. Sharpe, P. K. and Caleb, P. (1994) Artificial neural networks within medical decision support systems. Scand. J. Clin. Lab. Invest. 54, 3–11.

    Article  Google Scholar 

  37. Fierz, W. (2002) Information management driven by diagnostic patient data: right information for the right patient. Expert. Rev. Mol. Diagn. 2, 355–360.

    Article  PubMed  Google Scholar 

  38. Malakoff, D. (1999) Bayes offers a ‘new’ way to make sense of numbers [news] [see comments]. Science 286, 1460–1464.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Fierz, W. (2004). Basic Problems of Serological Laboratory Diagnosis. In: Decler, J., Reischl, U. (eds) Molecular Diagnosis of Infectious Diseases. Methods in Molecular Medicine™, vol 94. Humana Press. https://doi.org/10.1385/1-59259-679-7:393

Download citation

  • DOI: https://doi.org/10.1385/1-59259-679-7:393

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-221-6

  • Online ISBN: 978-1-59259-679-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics