Advertisement

Released Chromatin or DNA Fiber Preparations for High-Resolution Fiber FISH

  • Henry H. Q. Heng
Part of the Methods in Molecular Biology™ book series (MIMB, volume 123)

Abstract

When combined with molecular analysis and immunocytological localization, fluorescence in situ hybridization (FISH) represents one of the most direct and precise experimental tools in current biological research (1-4). Direct visualization and in situ detection fill the gap between molecular analysis and cytological description and provide a new avenue for in vitro and in vivo comparison. Such a system facilitates the understanding of cellular events not only with respect to what and how, but also where and when.

Keywords

Wash Solution Chromatin Fiber Plastic Coverslip Super Blocker Alkaline Lysis Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Heng, H. H. Q., Spyropoulos, B., and Moens, P. B. (1997) FISH technology in chromosome and genome research. Bioessays 19, 75–84.PubMedCrossRefGoogle Scholar
  2. 2.
    Lawrence, B. J. (1990) A fluorescence in situ hybridization approach for gene mapping and the study of nuclear organization. in Genome Analysis, vol. I: Genetic and Physical Mapping (Davies, E. K. and Tilghman, M. S. eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 1–38.Google Scholar
  3. 3.
    Trask, J. B. (1991) Fluorescence in situ hybridization. Trends Genet. 7, 149–154.PubMedGoogle Scholar
  4. 4.
    Lichter, P., Boyle, A. L., Cremer, T., and Ward, D. C. (1991) Analysis of genes and chromosomes by nonisotopic in situ hybridization. GATA 8, 24–35.Google Scholar
  5. 5.
    Heng, H. H. Q., Squire, J., and Tsui, L.-C. (1991) Chromatin mapping—a strategy for physical characterization of the human genome by hybridization in situ. Proc. 8th. Int. Cong. Hum. Gen. Am. J. Hum. Genet. 49(Suppl), 368.Google Scholar
  6. 6.
    Heng, H. H. Q., Squire, J., and Tsui, L.-C. (1992) High resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc. Natl. Acad. Sci. USA 89, 9509–9513.PubMedCrossRefGoogle Scholar
  7. 7.
    Wiegant, J., Kalle, W., Mullenders, L., Brookes, S., Hovers, J. M. N., Dauwerse, J. G., van Ommen, G. J. B., and Raap, A. K. (1992) High resolution in situ hybridization using DNA halo preparation. Hum. Mol. Genet. 1, 587–592.PubMedCrossRefGoogle Scholar
  8. 8.
    Heiskanen, M., Peltonen, L., and Palotie, A. (1996) Visual mapping by high resolution FISH. Trends Genet. 12, 379–382.PubMedCrossRefGoogle Scholar
  9. 9.
    Raap, A. K., Florijn, R. J., Blonden, L. A. J., Wiegant, J., Vaandrager, J.-W., Vrolijk, H., den Dunnen, J., Tanke, H. J., and van Ommen, G.-J. (1996) Fiber FISH as a DNA mapping tool. Methods: A Companion to Methods in Enzymology 9, 67–73.PubMedCrossRefGoogle Scholar
  10. 10.
    Heng, H. H. Q. and Tsui, L.-C. (1998) High resolution free chromatin/DNA fiber FISH. J. Chromatogr. A 806, 219–229.PubMedCrossRefGoogle Scholar
  11. 11.
    Heng, H. H. Q., Spyropoulos, B., and Moens, P. B. (1999) DNA-protein in situ covisualization for chromosome analysis, in Methods in Molecular Biology, In Situ Hybridization Protocols (Darby, I. A., ed.), Humana Press, Totowa, NJ, Chap. 2.Google Scholar
  12. 12.
    Heng, H. H. Q., Chamberlain, J. W., Shi, X.-M., Spyropoulos, B., Tsui, L.-C., and Moens, P. B. (1996) Regulation of meiotic chromatin loop size by chromosomal position. Proc. Natl. Acad. Sci. USA 93, 2795–2800.PubMedCrossRefGoogle Scholar
  13. 13.
    Lichter, P., Tang, C.-C., Gall, K., Hermanson, G., Evans, G., Housman, D., and Ward, D. (1990) High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247, 64–69.PubMedCrossRefGoogle Scholar
  14. 14.
    Brandriff, B., Gordon, L., and Trask, B. (1991) A new system for high-resolution DNA sequence mapping in interphase pronuclei. Genomics 10, 75–82.PubMedCrossRefGoogle Scholar
  15. 15.
    Heng, H. H. Q. and Zhao X. L. (1987) Studies of the free chromatin structure. J. Sichuan Univ. Nat. Sci. Edi. 24, 479–485.Google Scholar
  16. 16.
    Heng, H. H. Q. and Shi, X-M. (1997) From free chromatin analysis to high resolution fiber FISH. Cell Res. 7, 119–124.PubMedGoogle Scholar
  17. 17.
    Heng, H. H. Q. and Chen, W. Y. (1985) The study of the chromatin and the chromosome structure for Bufo gargarizans by light microscope. J. Sichuan Univ. Nat. Sci. 22, 105–109.Google Scholar
  18. 18.
    Parra, I. and Windle, B. (1993) High resolution visual mapping of stretched DNA by fluorescent hybridization. Nat. Genet. 5, 17–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Haaf, T. and Ward, D. C. (1994) Structural analysis of α-satellite DNA and centromere proteins using extended chromatin and chromosomes. Hum. Mol. Genet. 3, 697–709.PubMedCrossRefGoogle Scholar
  20. 20.
    Fidlerova, H., Senger, G., Kost, M., Sanseau, P., and Sheer, D. (1994) Two simple procedures for releasing chromatin from routinely fixed cells for fluorescence in situ hybridization. Cytogenet. Cell Genet. 65, 203–205.PubMedCrossRefGoogle Scholar
  21. 21.
    Houseal, T. W., Dackowski, W. R., Landes, G. M., and Klinger, K. W. (1994) High resolution mapping of overlapping cosmids by fluorescence in situ hybridization. Cytometry 15, 193–198.PubMedCrossRefGoogle Scholar
  22. 22.
    Heiskanen, M., Karhu, R., Hellsten, E., Peltonen, L., Kallioniemi, O. P., and Palotie, A. (1994) High resolution mapping using fluorescence in situ hybridization to extended DNA fibers prepared from agarose-embedded cells. BioTechniques 17, 928–934.PubMedGoogle Scholar
  23. 23.
    Weier, H.-U. G., Wang, M., Mullikin, J. C., Zhu, Y., Cheng, J.-F., Greulich, K. M., Bensimon, A., and Gray, J. W. (1995) Quantitative DNA fiber mapping. Hum. Mol. Genet. 4, 1903–1910.PubMedCrossRefGoogle Scholar
  24. 24.
    Michalet, X., Ekong, R., Fougerousse, F., Rousseaux, S., Schurra, C., Hornigold, N., van Slegtenhorst, M., Wolfe, J., Povey, S., Beckmann, J, and Bensimon, A. (1997) Dynamic molecular combing: stretching the whole human genome for high-resolution studies. Science 277, 1518–1522.PubMedCrossRefGoogle Scholar
  25. 25.
    Samad, A., Huff, J. E., Cai, W., and Schwartz, D. C. (1995) Optical mapping: a novel, single-molecule approach to genomic analysis. Genome Res. 5, 1–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Florijn, R. J., Bonden, A. J., Vrolijk, H., Wiegant, J., Vaandrager, J.-W., Baas, F., den Dunnen, J. T., Tanke, H. J., van Ommen, G. J. B., and Raap, A. K. (1995) High-resolution DNA fiber-FISH for genomic DNA mapping and color bar-coding of large genes. Hum. Mol. Genet. 4, 831–836.PubMedCrossRefGoogle Scholar
  27. 27.
    Heng, H. H. Q. and Tsui, L.-C. (1994) Free chromatin mapping by FISH, in Methods in Molecular Biology, vol. 33: In Situ Hybridization Protocols (Choo, K. H. A., ed.), Humana Press, Totowa, NJ, pp. 109–122.Google Scholar
  28. 28.
    Heng, H. H. Q., Tsui, L.-C., Windle, B., and Parra I. (1995) High resolution FISH analysis, in Current Protocols in Human Genetics (Dracopoli, N., Haines, J., Korf, B., Moir, D., Morton, C., Seidman, C., Seidman, J., and Smith, D., eds.), John Wiley and Sons, New York, pp. 4.5.1–4.5.25.Google Scholar
  29. 29.
    Heng, H. H. Q. and Tsui, L.-C. (1994) FISH detection on DAPI-banded chromosomes, in Methods in Molecular Biology, vol. 33: In Situ Hybridization Protocols (Choo, K. H. A., ed.), Humana Press, Totowa, NJ, pp. 35–49.Google Scholar
  30. 30.
    Heng, H. H. Q. and Tsui, L.-C. (1993) Modes of DAPI banding and simultaneous in situ hybridization. Chromosoma 102, 325–332.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Henry H. Q. Heng
    • 1
  1. 1.Center for Molecular Medicine and Genetics, School of MedicineWayne State UniversityDetroit

Personalised recommendations