Native Polytene Chromosomes of Drosophila melanogaster for Light and Electron Microscopic Observation of the Conformation and Distribution of Molecules

  • Ronald J. Hill
  • Margaret R. Mott
Part of the Methods in Molecular Biology™ book series (MIMB, volume 123)


In the 1930s, the discovery of a simple method for the isolation and detailed microscopic observation of the banded structures that lie within the nuclei of salivary gland cells of Drosophila melanogaster was soon followed by the realization that these structures were in fact a highly amplified form of interphase chromosomes (1). The method involved squashing the salivary gland, immersed in 45% acetic acid, between a coverslip and a microscope slide. Aqueous acetic acid dissolves the cell and nuclear membranes and generally disperses cellular contents except for the chromosomes which are toughened by “acid fixation.” The acid-squashing procedure has, in general, served as the basis for the isolation of D. melanogaster polytene chromosomes for cytological study since that time. It is ideal for the rapid preparation of salivary gland chromosomes for morphological observation in the light microscope and as targets for in situ hybridization (see, however, Note 1).


Salivary Gland Polytene Chromosome Chromosome Preparation Salivary Gland Cell Salivary Gland Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Painter, T. S. (1934) A new method for the study of chromosome aberrations and the plotting of chromosomal maps in Drosophila melanogaster. Genetics 19, 175–188.PubMedGoogle Scholar
  2. 2.
    Cole, R. D. and Lawson, G. M. (1979) Selective displacement of histone H1 from whole HeLa nuclei: effect on chromatin structure in situ as probed by micrococcal nuclease. Biochemistry 18, 2160–2166.PubMedCrossRefGoogle Scholar
  3. 3.
    Peacocke, A. R. (1957) The dissociation and molecular structure of the nucleic acids. Spec. Publ. Chem. Soc. Lond. 8, 139–164.Google Scholar
  4. 4.
    Baker, J. R. (1958) Principles of Biological Microtechnique. Methuen, London.Google Scholar
  5. 5.
    Hancock, J. M. and Summer, A. T. (1982) The role of proteins in the production of different types of chromosome bands. Cytobios 35, 37–46.PubMedGoogle Scholar
  6. 6.
    Hill, R. J., Watt, F., and Stollar, B. D. (1984) Z-DNA immunoreactivity of Drosophila polytene chromosomes. Major effects of 45% acetic acid, 95% ethanol and DNAse I nicking. Exp. Cell Res. 153, 469–482.PubMedCrossRefGoogle Scholar
  7. 7.
    Chen, C. C., Bruegger, B. B., Kern, C. W., Lin, Y. C., Halpern, R. M., and Smith, R. A. (1977) Phosphorylation of nuclear proteins in regenerating liver. Biochemistry 16, 4852–4855.PubMedCrossRefGoogle Scholar
  8. 8.
    Chargaff, E. (1955) Isolation and composition of the deoxypentose nucleic acids and of the corresponding nucleoproteins, in The Nucleic Acids (Chargaff, E. and Davidson, J. N., eds.), Academic Press, New York, N Y, pp. 307–371.Google Scholar
  9. 9.
    Silver, L. M. and Elgin, S. C. R. (1976) A method for determination of the in situ distribution of chromosomal proteins. Proc. Natl. Acad. Sci. USA 73, 423–427.PubMedCrossRefGoogle Scholar
  10. 10.
    Zink, B. and Paro, R. (1989) In vivo binding of a trans-regulator of homoeotic genes in Drosophila melanogaster. Nature 337, 468–471.PubMedCrossRefGoogle Scholar
  11. 11.
    Alfageme, C. R., Rudkin, G. T., and Cohen, L. H. (1980) Isolation, properties and cellular distribution of D1, a chromosomal protein of Drosophila. Chromosoma 78, 1–31.CrossRefGoogle Scholar
  12. 12.
    Mott, M. R., Burnett, E. J., and Hill, R. J. (1980) Ultrastructure of polytene chromosomes of Drosophila isolated by microdissection. J. Cell Sci. 45, 15–30.PubMedGoogle Scholar
  13. 13.
    Mott, M. R. and Hill, R. J. (1986) The ultrastructural morphology of native salivary gland chromosomes of Drosophila melanogaster. The band-interband question. Chromosoma 94, 403–411.PubMedCrossRefGoogle Scholar
  14. 14.
    Hill, R. J. and Watt, F. (1978) Native salivary chromosomes of Drosophila melanogaster. Cold Spring Harb. Symp. Quant. Biol. XLII, 859–865.Google Scholar
  15. 15.
    Ashburner, M. (1972) Patterns of puffing activity in the salivary gland chromosomes of Drosophila. VI. Induction by ecdysone in salivary glands of D. melanogaster cultured in vitro. Chromosoma 38, 255–281.PubMedCrossRefGoogle Scholar
  16. 16.
    Callan, H. and Lloyd, L. (1960) Lampbrush chromosomes of crested newts Triturus cristatus (Laurenti). Philos. Trans. R. Soc. Lond. B 243, 135–219.CrossRefGoogle Scholar
  17. 17.
    Cohen, L. H. and Gotchel, B. V. (1971) Histones of polytene and non-polytene nuclei of Drosophila melanogaster. J. Biol. Chem. 246, 1841–1848.PubMedGoogle Scholar
  18. 18.
    D’Angelo, E. G. (1946). Microsurgical studies on Chironomus salivary gland chromosomes. Biol. Bull. 90, 71–87.PubMedCrossRefGoogle Scholar
  19. 19.
    Hewish, D. R. and Burgoyne, L. A. (1973) Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem. Biophys. Res. Commun. 52, 504–510.PubMedCrossRefGoogle Scholar
  20. 20.
    Mott, M. R. and Callan, H. G. (1975) An electron microscope study of the lamp-brush chromosomes of the newt Triturus cristatus. J. Cell Sci. 17, 241–261.PubMedGoogle Scholar
  21. 21.
    Ainsworth, S. K. and Karnovsky, M. J. (1972) An ultrastructural staining method for enhancing the size and electron opacity of ferritin in thin sections. J. Histochem. Cytochem. 20, 225–229.PubMedGoogle Scholar
  22. 22.
    Riva, A. (1974) A simple and rapid staining method for enhancing the contrast of tissues previously treated with uranyl acetate. J. Microscopie 19, 105–108.Google Scholar
  23. 23.
    Hill, R. J., Mott, M. R., Watt, F., Fifis, T., and Underwood, P. A. (1986) The localization of an Mr 74,000 major chromatin antigen on native salivary chromosomes of Drosophila melanogaster. Chromosoma (Berl.) 94, 441–448.CrossRefGoogle Scholar
  24. 24.
    Hill, R. J., Mott, M. R., and Steffensen, D. M. (1987) The preparation of polytene chromosomes for localization of nucleic acid sequences, proteins and chromatin conformation. Int. Rev. Cytol. 108: 61–118.PubMedCrossRefGoogle Scholar
  25. 25.
    Pohl, F. M. and Jovin, T. M. (1972) Salt-induced cooperative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly (dG–dC). J. Mol. Biol. 67, 375–396.PubMedCrossRefGoogle Scholar
  26. 26.
    Wang, A. H.-J., Quigley, G. J., Kolpak, F. J., Crawford, J. L., van Boom, J. H., van der Marel, G., and Rich, A. (1979) Molecular structure of a left-handed double-helical DNA fragment at atomic resolution. Nature 282, 680–686.PubMedCrossRefGoogle Scholar
  27. 27.
    Drew, H., Takano, T., Tanaka, S., Itakura, K., and Dickerson, R. E. (1980) High-salt d(CpGpCpG), a left-handed Z-DNA double helix. Nature 299, 312–316.Google Scholar
  28. 28.
    Nordheim, A., Pardue, M. L., Lafer, E. M., Moller, A., Stollar, B. D., and Rich, A. (1981) Antibodies to left-handed Z-DNA bind to interband regions of Drosophila polytene chromosomes. Nature 294, 417–422.PubMedCrossRefGoogle Scholar
  29. 29.
    Arndt-Jovin, D. J., Robert-Nicoud, M., Zarling, D. A., Greider, C., Weimer, E., and Jovin, T. M. (1983) Left-handed Z-DNA in bands of acid fixed chromosomes. Proc. Natl. Acad. Sci. USA 80, 4344–4348.PubMedCrossRefGoogle Scholar
  30. 30.
    Hill, R. J. and Stollar, B. D. (1983) Dependence of Z-DNA antibody binding to polytene chromosomes on acid fixation and DNA torsional strain. Nature 305, 338–340.PubMedCrossRefGoogle Scholar
  31. 31.
    Alfageme, C. R., Rudkin, G. T., and Cohen, L. H. (1980) Isolation, properties and cellular distribution of D1, a chromosomal protein of Drosophila. Chromosoma 78, 1–31.CrossRefGoogle Scholar
  32. 32.
    Artavanis-Tsakonas, S., Schedl, P., Mirault, M.-E., and Moran, L. (1979) Genes for the 70,000 dalton heat shock protein in two cloned D. melanogaster DNA segments. Cell 17, 9–18.PubMedCrossRefGoogle Scholar
  33. 33.
    Henikoff, S. (1981) Position-effect variegation and chromosome structure of a heat shock puff in Drosophila. Chromosoma 83, 381–393.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Ronald J. Hill
    • 1
  • Margaret R. Mott
    • 1
  1. 1.CSIRO Molecular ScienceNorth RydeAustralia

Personalised recommendations