Advertisement

Preparation of Human Partial Chromosome Paints from Somatic Cell Hybrids

  • Nicoletta Archidiacono
  • Rosalia Marzella
  • Cosma Spalluto
  • Margherita Pennacchia
  • Luigi Viggiano
  • Mariano Rocchi
Part of the Methods in Molecular Biology™ book series (MIMB, volume 123)

Abstract

Whole chromosome painting libraries (WCPLs) have provided a very powerful tool to cytogeneticists. The technique allows the painting of specific chromosomes in metaphase spreads and in interphase nuclei (1-4). The usefulness of WCPLs is particularly evident in identifying the chromosomal origin of de novo unbalanced translocations and marker chromosomes, or, more generally, in characterizing those cytogenetic cases in which the conventional approach based on banding techniques failed to elucidate the chromosomal rearrangement under study (5,6). Such cases are frequently experienced in cancer cytogenetics (7,8). WCPLs are usually derived from flow-sorted chromosomes.

Keywords

Somatic Cell Hybrid Pericentric Inversion Dilute Stock Solution Selective Polymerase Chain Reaction Cancer Cytogenetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Pinkel, D., Landegent, J., Collins, C., Fuscoe, J., Seagraves, R., Lucas, J., and Gray, J. W. (1988) Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocation of chromosome 4. Proc. Natl. Acad. Sci. USA 85, 9138–9142.PubMedCrossRefGoogle Scholar
  2. 2.
    Lichter, P., Cremer, T., Borden, J., Manuelidis, L., and Ward, D. C. (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum. Genet. 80, 224–234.PubMedCrossRefGoogle Scholar
  3. 3.
    Collins, C., {mnLin Kuo}, W., Segraves, R., Fuscoe, J., Pinkel, D., and Gray, J. W. (1991) Construction and characterization of plasmid libraries enriched in sequences from single human chromosomes. Genomics 11, 997–1006.Google Scholar
  4. 4.
    Vooijs, M., Yu, L.-C., Tkachuk, D., Pinkel, D., Johnson, D., and Gray, J. W. (1993) Libraries for each human chromosome, constructed from sorted-enriched chromosomes by using linker-adaptor PCR. Am. J. Hum. Genet. 52, 586–597.PubMedGoogle Scholar
  5. 5.
    Jauch, A., Daumer, C., Lichter, P., Murken, J., Schroeder-Kurth, T., and Cremer, T. (1990) Chromosomal in situ suppression hybridization of human gonosomes and autosomes and its use in clinical cytogenetics. Hum. Genet. 85, 145–150.PubMedCrossRefGoogle Scholar
  6. 6.
    Weier, H. U., Lucas, J. N., Poggensee, M., Segraves, R., Pinkel, D., and Gray, J. W. (1991) Two-color hybridization with high complexity chromosome-specific probes and a degenerate alpha satellite probe DNA allows unambiguous discrimination between symmetrical and asymmetrical translocations. Chromosoma 100, 371–376.PubMedCrossRefGoogle Scholar
  7. 7.
    Cremer, T., Lichter, P., Borden, J., Ward, D. C., and Manuelidis, L. (1988) Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum. Genet. 80, 235–246.PubMedCrossRefGoogle Scholar
  8. 8.
    Gray, J. W. and Pinkel, D. (1992) Molecular cytogenetics in human cancer diagnosis. Cancer 69, 1536–1542.PubMedCrossRefGoogle Scholar
  9. 9.
    Kievits, T., Devilee, P., Wiegant, J., Wapenaar, M. C., Cornelisse, C. J., van Ommen, G. J. B., and Pearson, P. L. (1990) Direct nonradioactive in situ hybridization of somatic cell hybrids DNA to human lymphocyte chromosomes. Cytometry 11, 105–109.PubMedCrossRefGoogle Scholar
  10. 10.
    Boyle, A. L., Lichter, P., and Ward, D. C. (1990) Rapid analysis of mouse-hamster hybrid cell lines by in situ hybridization. Genomics 7, 127–130.PubMedCrossRefGoogle Scholar
  11. 11.
    Liu, P., Siciliano, J., Seong, D., Craig, J., Zhao, Y., de Jong, P. J., and Siciliano, M. J. (1993) Dual Alu PCR primers and conditions for isolation of human chromosome painting probes from hybrid cells. Cancer Genet. Cytogenet. 65, 93–99.PubMedCrossRefGoogle Scholar
  12. 12.
    Lengauer, C., Green, E. D., and Cremer, T. (1992) Fluorescence in situ hybridization of yac clones after Alu-PCR amplification. Genomics 13, 826–828.PubMedCrossRefGoogle Scholar
  13. 13.
    Antonacci, R., Marzella, R., Finelli, P., Lonoce, A., Forabosco, A., Archidiacono, N., and Rocchi, M. (1995) A panel of subchromosomal painting libraries representing over 300 regions of the human genome. Cytogenet. Cell Genet. 68, 25–32.PubMedCrossRefGoogle Scholar
  14. 14.
    Muller, S., Koehler, U., Wienberg, J., Marzella, R., Finelli, P., Antonacci, R., Rocchi, M., and Archidiacono, N. (1996) Comparative chromosome mapping of primate chromosomes with Alu-PCR generated probes from human/rodent somatic cell hybrids. Chromosome Res. 4, 38–42.PubMedCrossRefGoogle Scholar
  15. 15.
    Marzella, R., Viggiano, L., Ricco, A., Tanzariello, A., Fratello, A., Archidiacono, N., and Rocchi, M. (1997) A panel of radiation hybrids and YAC clones specific for chromosome 5. Cytogenet. Cell Genet. 77, 232–237.PubMedCrossRefGoogle Scholar
  16. 16.
    Korenberg, J. R. and Rykowski, M. C. (1988) Human genome organization Alu lines, and the molecular structure of metaphase chromosome bands. Cell 53, 391–400.PubMedCrossRefGoogle Scholar
  17. 17.
    Baldini, A. and Ward, D. C. (1991) In situ hybridization of human chromosomes with Alu-PCR products: a simultaneous karyotype for gene mapping studies. Genomics 9, 770–774.PubMedCrossRefGoogle Scholar
  18. 18.
    Schwarz, H. (1996) An inexpensive, home made DNA size standard. TIG 12, 397.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Nicoletta Archidiacono
    • 1
  • Rosalia Marzella
    • 1
  • Cosma Spalluto
    • 1
  • Margherita Pennacchia
    • 1
  • Luigi Viggiano
    • 1
  • Mariano Rocchi
    • 1
  1. 1.Instituto di GeneticaUniversitá di BariBariItaly

Personalised recommendations