Advertisement

Radioactive In Situ Hybridization to Animal Chromosomes

  • Graham C. Webb
Part of the Methods in Molecular Biology™ book series (MIMB, volume 123)

Abstract

Although largely replaced by the use of fluorescent in situ hybridization (FISH) in animal and human molecular cytogenetics, the technique of radioactive in situ hybridization (RISH) still has some uses. Using practicable exposure times for autoradiographs of 3–4 wk, RISH is approx 50 times more sensitive than FISH using biotin- or digoxygenin-labeled probes, and probably 10 times more sensitive than the recently introduced system of tyramide FISH (NEN Life Sciences Prods., Code NEL 730/730A). In addition, the sensitivity of RISH can be increased with longer exposures, in a roughly linear fashion until the silver bromide grains in the emulsion approach saturation over the target; by contrast, FISH requires instantaneous expression of the signal. Because of its high sensitivity, RISH can be used with short probes (1), down to 200 bp, poorly labeled probes (2), short target sequences, and old slides (Table 1). Bands on the chromosomes can be excellent with RISH (3), requiring no enhancement by image analyzing systems, and observed with simple brightfield microscopy (Fig. 1); although finding a suitable batch of Giemsa stain can be difficult (see Subheading 3.6. and Note 1).

Keywords

Giemsa Stain Deionized Formamide Crystal Diameter Short Probe Silver Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Summers, K. M., Murphy, R. M., Webb, G. C., Peters, G. B., Morton, H., Cassidy, A. I., and Cavanagh, A. C. (1996) The human early pregnancy factor/chaperonin 10 gene family. Biochem. Mol. Med. 58, 52–58.PubMedCrossRefGoogle Scholar
  2. 2.
    Webb, G. C., Earle, M. E., Merritt, C., and Board, P. G. (1988) Localization of human alpha-one acid glycoprotein genes to 9q31 to 9q34.1. Cytogenet. Cell Genet. 47, 18–27.PubMedCrossRefGoogle Scholar
  3. 3.
    Finch, J. L., Webb, G. C., Evdokiou, A., and Cowled, P. A. (1997) Chromosomal localization of the human urothelial “tetraspan” gene, UPK1B, to 3q13.3-21 and detection of a Taq1 polymorphism. Genomics 40, 501–503.PubMedCrossRefGoogle Scholar
  4. 4.
    Kamei, M., Campbell, H. D., Webb, G. C., and Young, I. G. (1998) SOL, a human homologue of the Drosophila melanogaster small optic lobes gene, is a member of the Calpain and zinc-finger gene families and maps to human chromosome 6p13. 3 near CATM (cataract with micropthalmia). Genomics 51, 197–206.PubMedCrossRefGoogle Scholar
  5. 5.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  6. 6.
    Buckle, V. J. and Craig, I. W. (1986) In situ hybridization, in Human Genetic Diseases: A Practical Approach (Davies, K., ed.), IRL, Oxford, England, pp. 85–100.Google Scholar
  7. 7.
    Choo, K. H. A. and Earle, E. (1994) Radioactive in situ hybridization to replication-banded chromosomes, in Methods in Molecular Biology, vol. 33: In Situ Hybridization Protocols (Choo, K. H. A., ed.), Humana Press, Totowa, NJ, pp. 147–158.Google Scholar
  8. 8.
    Webb, G. C. and Fabb, S. A. (1985) Probing murine male meiosis using unique DNA flanking the immunoglobulin heavy chain genes. Cytobios 43, 159–165.PubMedGoogle Scholar
  9. 9.
    Bedo, D. and Webb, G. C. (1990) Localization of 5S RNA genes in polytene chromosomes of Lucilia cuprina (Diptera: Calliphoridae). Genome 33, 941–943.Google Scholar
  10. 10.
    Chapman, G., Remiszewski, J. L., Webb, G. C., Schulz, T. C., Bottema, C. D. K., and Rathgen, P. D. (1997) The mouse homeobox gene, Gbx-2: genomic organization and expression in pluripotent cells in vitro and in vivo. Genomics 46, 223–233.PubMedCrossRefGoogle Scholar
  11. 11.
    Pardue, M. L. (1985) In situ hybridization, in Nucleic Acid Hybridisation: A Practical Approach (Hames, B. D. and Higgins, S. J., eds.), IRL, Oxford, England, pp. 179–202.Google Scholar
  12. 12.
    Webb, G. C., Coggan, M., Ichinose, A., and Board, P. G. (1989) Localization of the coagulation factor XIII B subunit gene (F13B) to chromosome bands 1q31–32.1 and restriction fragment length polymorphism at the locus. Hum. Genet. 81, 157–160.PubMedCrossRefGoogle Scholar
  13. 13.
    Evdokiou, A., Webb, G. C., Peters, G. B., Dobrovic, A. N., O’Keefe, D. S., Forbes, I. J., and Cowled, P. A. (1993) Localization of the human growth arrest-specific gene (GAS1) to chromosome bands 9q21.3–q22, a region frequently deleted in myeloid malignancies. Genomics 18, 731–733.PubMedCrossRefGoogle Scholar
  14. 14.
    Webb, G. C., Baker, R. T., Fagan, K., and Board, P. G. (1990) Localization of the human UbB polyubiquitin gene to chromosome bands 17p11.1–17p12. Am. J. Hum. Genet. 46, 308–315.PubMedGoogle Scholar
  15. 15.
    Rogers, A. W. (1979) Techniques of Autoradiography. Elsevier, Amsterdam.Google Scholar
  16. 16.
    Ron, A. and Prescott, D. M. (1970) The efficiency of tritium counting with seven radioautographic emulsions, in Methods in Cell Physiology, vol. IV (Prescott, D. M., ed.), Academic Press, New York, Chap. 11.Google Scholar
  17. 17.
    Board, P. G. and Webb, G. C. (1987) Isolation of a cDNA clone and localisation of human glutathione S-transferase-2 genes to chromosome band 6p12. Proc. Natl. Acad. Sci. USA 84, 2377–2381.PubMedCrossRefGoogle Scholar
  18. 18.
    Board, P. G., Webb, G. C., and Coggan, M. (1989) Isolation of a cDNA clone and localization of the human glutathione S-transferase 3 genes to chromosome bands 11q13 and 12q13–14. Ann. Hum. Genet. 53, 205–213.PubMedCrossRefGoogle Scholar
  19. 19.
    Webb, G. C., Parsons, P. A., and Chenevix-Trench, G. (1990) Localization of the gene for human proliferating cell nuclear antigen/cyclin by in situ hybridization. Hum. Genet. 86, 84–86.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Graham C. Webb
    • 1
    • 2
  1. 1.Department of Obstetrics and GynaecologyThe Queen Elizabeth HospitalWoodville
  2. 2.The Department of Animal ScienceThe University of AdelaideGlen OsmondAustralia

Personalised recommendations