Advertisement

In Situ Hybridization for Electron Microscopy

  • Ross F. Waller
  • Geoffrey I. McFadden
Part of the Methods in Molecular Biology™ book series (MIMB, volume 123)

Abstract

In the great majority of cases in situ hybridization is used to localize mRNA species at the tissue level, or DNA at the chromosome level. These approaches are generally best done by light microscopy. There are instances, however, when it becomes important to localize nucleic acids at the subcellular level—this brings us into the domain of the electron microscope. Distribution of nucleic acids within the cell can be an important component of their function. The partitioning, manufacturing, trafficking, and processing of different nucleic acids is critical to the functioning of cells, and is only beginning to be understood.

Keywords

Benzoyl Peroxide Hybridization Buffer Probe Solution Standard Saline Citrate Label Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    McFadden, G. I., Gilson, P. R., Hofmann, C. J., Adcock, G. J., and Maier, U.-G. (1994) Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga. Proc. Natl. Acad. Sci. USA 91, 3690–3694.PubMedCrossRefGoogle Scholar
  2. 2.
    McFadden, G. I., Reith, M. E., Munholland, J., and Lang-Unnasch, N. (1996) Plastid in human parasites. Nature 381, 482.PubMedCrossRefGoogle Scholar
  3. 3.
    Köhler, S., Delwiche, C. F., Denny, P. W., Tilney, L. G., Webster, W., Wilson, R. J. M., Palmer, J. D., and Roos, D. (1997) A plastid of probably green algal origin in apicomplexan parasites. Science 275, 1485–1489.PubMedCrossRefGoogle Scholar
  4. 4.
    Bonfiglioli, R. G., McFadden, G. I., and Symons, R. H. (1994) In situ hybridization localizes avocado sunblotch viroid on chloroplast thylakoid membranes and coconut cadang cadang viroid in the nucleus. Plant J. 6, 99–103.CrossRefGoogle Scholar
  5. 5.
    Bonfiglioli, R. G., Webb, D. R., and Symons, R. H. (1996) Tissue and intra-cellular distribution of coconut cadang cadang viroid and citrus exocortis viroid determined by in situ hybridization and confocal laser scanning and transmission electron microscopy. Plant J. 9, 457–465.CrossRefGoogle Scholar
  6. 6.
    Somasundaran, M., Zapp, M. L., Beattie, L. K., Pang, L., Byron, K. S., Bassell, G. J., Sullivan, J. L., and Singer, R. H. (1994) Localization of HIV RNA in mitochondria of infected cells: potential role in cytopathogenicity. J. Cell Biol. 126, 1353–1360.PubMedCrossRefGoogle Scholar
  7. 7.
    Baccetti, B., Collodel, G., and Piomboni, P. (1996) The debate on the presence of HIV-1 virus in human spermatozoa. Persp. Drug Discov. Des. 5, 129–142.CrossRefGoogle Scholar
  8. 8.
    Baccetti, B., Benedetto, A., Burrini, A. G., Collodel, G., Ceccarini, E. C., Crisa, N., Dicaro, A., Estenoz, M., Garbuglia, A. R., Massacesi, A., Piomboni, P., Renieri, T., and Solazzo, D. (1994) HIV-particles in spermatozoa of patients with AIDS and their transfer into the oocyte. J. Cell Biol. 127, 903–914.PubMedCrossRefGoogle Scholar
  9. 9.
    Huang, S., Deerinck, T. J., Ellisman, M. H., and Spector, D. L. (1994) In vivo analysis of the stability and of nuclear poly(A)+ RNA. J. Cell Biol. 126, 877–899.PubMedCrossRefGoogle Scholar
  10. 10.
    Huang, S. and Spector, D. L. (1992) U1 and U2 small nuclear RNAs are present in nuclear speckles. Proc. Natl. Acad. Sci. USA 89, 305–308.PubMedCrossRefGoogle Scholar
  11. 11.
    Gilson, P. R. and McFadden, G. I. (1996) The miniaturized nuclear genome of a eukaryotic endosymbiont contains genes that overlap, genes that are cotranscribed, and the smallest known spliceosomal introns. Proc. Natl. Acad. Sci. USA 93, 7737–7742.PubMedCrossRefGoogle Scholar
  12. 12.
    Cohen, N. S. (1996) Intracellular localization of the mRNAs of argininosuccinate synthetase and argininosuccinate lyase around liver mitochondria, visualized by high-resolution in situ reverse transcription-polymerase chain reaction. J. Cell. Biochem. 61, 81–96.PubMedCrossRefGoogle Scholar
  13. 13.
    Shaw, M. K., Thompson, J., and Sinden, R. E. (1996) Localization of ribosomal RNA and Pbs21-mRNA in the sexual stages of Plasmodium berghei using electron microscope in situ hybridization. Eur. J. Cell Biol. 71, 270–276.PubMedGoogle Scholar
  14. 14.
    Singer, R. H., Lawrence, J. B., Silva, F., Langevin, G. L., Pomeroy, M., and Billings-Gagliardi, S. (1989) Strategies for ultrastructural visualization of biotinylated probes hybridized to messenger RNA in situ. Curr. Top. Microb. Immunol. 143, 55–69.Google Scholar
  15. 15.
    Bassell, G. J. (1993) High resolution distribution of mRNA within the cytoskeleton. J. Cell. Biochem. 52, 127–133.PubMedCrossRefGoogle Scholar
  16. 16.
    Bassell, G. J., Powers, C. M., Taneja, K. L., and Singer, R. H. (1994a) Single mRNAs visualized by ultrastructural in situ hybridization are principally localized at actin filament intersections in fibroblasts. J. Cell Biol. 126, 863–876.PubMedCrossRefGoogle Scholar
  17. 17.
    Bassell, G. J., Singer, R. H., and Kosik, K. S. (1994b) Association of poly(A) mRNA with microtubules in cultured neurons. Neuron 12, 571–582.PubMedCrossRefGoogle Scholar
  18. 18.
    Martinez, A., Miller, M. J., Quinn, K., Unsworth, E. J., Ebina, M., and Cuttitta, F. (1995) Non-radioactive localization of nucleic acids by direct in situ PCR and in situ RT-PCR in paraffin-embedded sections. J. Histochem. Cytochem. 43(8), 739–747.PubMedGoogle Scholar
  19. 19.
    Deerinck, T. F., Martone, V., Ram, L., Greene, D., Tsien, R. Y., Spector, D. L., Huang, S., and Ellisman, M. H. (1994) Fluorescence photooxidation with eosin-5-isothiocyanate: a method for high resolution immunolocalization and in situ hybridization for light and electron microscopy. J. Cell Biol. 126, 901–910.PubMedCrossRefGoogle Scholar
  20. 20.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  21. 21.
    Grunewald-Janho, S., Keesey, J., Leous, M., van Miltenburg, R., and Schroeder, C. (1996) Nonradioactive in situ hybridization application manual. Boehringer Mannheim, Germany.Google Scholar
  22. 22.
    Bodkin, D. K. and Knudson, D. L. (1985) Sequence relatedness of palyam virus genes to cognates of the palyam serogroup viruses by RNA-RNA hybridization. Virology 143, 55–62.PubMedCrossRefGoogle Scholar
  23. 23.
    Angerer, L. M. and Angerer, R. C. (1989) In situ hybridization with 35S-labelled RNA probes. DuPont Biotechnology Update 4, 1–6.Google Scholar
  24. 24.
    Horobin, R. W. (1974) An Exploratory Outline of Histochemistry and Biophysical Staining. Gustav Fisher/Butterworths, London.Google Scholar
  25. 25.
    Witkiewicz, H., Bolander, M. E., and Edward, D. R. (1993) Improved design of riboprobes from pBluescript and related vectors for in situ hybridization. BioTechniques 14, 408–412.Google Scholar
  26. 26.
    McFadden, G. I. (1995) tIn situ hybridization, in Methods in Cell Biology, vol. 49 (Galbraith, D. W., Bohnert, H. J., and Bourque, D. P., eds.), Academic Press, San Diego, pp. 165–183.Google Scholar
  27. 27.
    Egger, D., Troxler, M., and Bienz, K. (1994) Light and electron microscopic in situ hybridization—non-radioactive labelling and detection, double hybridization, and combined hybridization-immunocytochemistry. J. Histochem. Cytochem. 42, 815–822.PubMedGoogle Scholar
  28. 28.
    Fakan, S. and Fakan, J. (1987) Autoradiography of spread molecular complexes, in Electron Microscopy in Molecular Biology—A Practical Approach (Sommerville, J. and Scheen, U., eds.), IRL Press, Oxford, pp. 201–214.Google Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Ross F. Waller
    • 1
  • Geoffrey I. McFadden
    • 1
  1. 1.Department of BotanyUniversity of MelbourneParkvilleAustralia

Personalised recommendations