Advertisement

in situ Hybridization Protocols for Detection of Viral DNA Using Radioactive and Nonradioactive DNA Probes

  • Allison R. Jilbert
Part of the Methods in Molecular Biology™ book series (MIMB, volume 123)

Abstract

in situ hybridization can provide accurate intracellular localization of specific viral nucleic acids in infected tissues and cells. The technique, although conceptually simple, is affected by many variables including: stability and accessibility of target sequences; methods of tissue and cell fixation; prehybridization and hybridization conditions; choice of indicator molecules and detection system; and size, specific activity, and nature of the probe used. Each new tissue and target sequence may have different optimal conditions for each of these variables and should be carefully balanced to yield the maximum amount of information. The technique has been used extensively in studies of viral infection of cells. Particular advantages include: (1) high sensitivity when examining tissues where a small percentage of cells contain a high copy of target molecules; (2) ability to correlate target sequences with cell type and distribution, histological features, and intracellular localization (nuclear vs cytoplasmic).

Keywords

Saline Sodium Citrate Hybridization Temperature Wash Temperature Potassium Bichromate Negative Control Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gowans, E. J., Burrell, C. J., Jilbert, A. R., and Marmion, B. P. (1981) Detection of hepatitis B virus DNA sequences in infected hepatocytes by in situ cytohybridization. J. Med. Virol. 8, 67–78.PubMedCrossRefGoogle Scholar
  2. 2.
    Gowans, E. J., Burrell, C. J., Jilbert, A. R., and Marmion, B. P. (1983) Patterns of single-and double-stranded hepatitis B virus DNA and viral antigen accumulation in infected liver cells. J. Gen. Virol. 64, 1229–1239.PubMedCrossRefGoogle Scholar
  3. 3.
    Gowans, E. J., Jilbert, A. R., and Burrell, C. J. (1989) Detection of specific DNA and RNA sequences in tissues and cells by in situ hybridization, in Nucleic Acid Probes (Symons, R. H., ed.), CRC Press, Boca Raton, FL, pp. 140–158.Google Scholar
  4. 4.
    Jilbert, A. R., Freiman, J. S., Gowans, E. J., Holmes, M., Cossart, Y. E., and Burrell, C. J. (1987) Duck hepatitis B virus DNA in liver, spleen and pancreas: analysis by in situ and Southern blot hybridization. Virology 158, 330–338.PubMedCrossRefGoogle Scholar
  5. 5.
    Jilbert, A. R., Freiman, J. S., Burrell, C. J., Holmes, M., Gowans, E. J., and Cossart, Y. E. (1988) Virus-liver cell interactions in duck hepatitis B virus infection: a study of virus dissemination within the liver. Gastroenterology 95, 1375–1382.PubMedGoogle Scholar
  6. 6.
    Jilbert, A. R., Wu, T.-T., England, J. M., Hall, P., de la M., Carp, N. Z., O’Connell, A. P., and Mason, W. S. (1992) Rapid resolution of duck hepatitis B virus infections occurs after massive hepatocellular involvement. J. Virol. 66, 1377–1388.PubMedGoogle Scholar
  7. 7.
    Mason, W. S., Cullen, J., Saputelli, J., Wu, T.-T., Liu, C., London, T. W., Lustbader, E., Schaffer, P., O’Connell, A. P., Fourel, I., Aldrich, C. E., and Jilbert, A. R. (1994) Characterisation of the antiviral effects of 2′ carbodeoxyguanosine in ducks chronically infected with duck hepatitis B virus. Hepatology: 19, 398–411.PubMedCrossRefGoogle Scholar
  8. 8.
    Kajino, K., Jilbert, A. R., Saputelli, J., Cullen, J., and Mason, W. S. (1994) Woodchuck hepatitis virus infections: very rapid recovery after a prolonged viremia and infection of virtually every hepatocyte. J. Virol. 68, 5792–5803.PubMedGoogle Scholar
  9. 9.
    Mason, W. S., Cullen, J., Moraleda, G., Saputelli, J., Aldrich, C., Miller, D. S., Tennant, B., Frick, L., Averett, D., Condreay, L., and Jilbert, A. R. (1998) Lamivudine therapy of WHV infected woodchucks. Virology 245, 18–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Herrington, C. S., Burns, J., Graham, A. K., Evans, M., and McGee, J. O. (1989) Interphase cytogenetics using biotin and digoxigenin labeled probes I: relative sensitivity of both reporter molecules for detection of HPV16 in CaSki cells. J. Clin. Pathol. 42, 592–600.PubMedCrossRefGoogle Scholar
  11. 11.
    Musiani, M., Zerbini, M., Venturoli, S., Gentilomi, G., Borghi, V., Pietrosemoli, P., Pecorari, M., and LaPlaca, M. (1994) Rapid diagnosis of cytomegalovirus encephalitis in patients with AIDS using in situ hybridization. J. Clin. Pathol. 47, 886–891.PubMedCrossRefGoogle Scholar
  12. 12.
    Burns, J., Graham, A. K., Frank, C., Fleming, K. A., Evans, M. F., and McGee, J. O. (1987) Detection of low copy human papilloma virus DNA and mRNA in routine paraffin sections of cervix by non-isotopic in situ hybridization. J. Clin. Pathol. 40, 858–864.PubMedCrossRefGoogle Scholar
  13. 13.
    Coates, P. J., Hall, P. A., Butler, M. G., and D’Ardenne, A. J. (1987) Rapid technique of DNA-DNA in situ hybridization on formalin fixed tissue sections using microwave irradiation. J. Clin. Pathol. 40, 865–869.PubMedCrossRefGoogle Scholar
  14. 14.
    Salimans, M. M., van de Rijke, F. M., Raap, A. K., and van {mnElsacker Niele}, A. M. (1989) Detection of parvovirus B19 DNA in fetal tissues by in situ hybridization and polymerase chain reaction. J. Clin. Pathol. 42, 525–530.Google Scholar
  15. 15.
    Desport, M., Collins, M. E., and Brownlie, J. (1994) Detection of bovine virus diarrhoea virus RNA by in situ hybridization with digoxigenin-labeled riboprobes. Intervirology 37, 269–276.PubMedGoogle Scholar
  16. 16.
    Van-Rensburg, E. J., Van Heerden, W. F., Venter, E. H., and Raubenheimer, E. J. (1995) Detection of human papillomavirus DNA with in situ hybridization in oral squamous carcinoma in a rural black population. S. Afr. Med. J. 85, 894–896.PubMedGoogle Scholar
  17. 17.
    (1996) Non-Radioactive In Situ Hybridization Application Manual, 2nd ed. Boehringer Mannheim, Germany.Google Scholar
  18. 18.
    Giaid, A., Hamid, Q., Adams, C., Springall, D. R., Terenghi, G., and Polak, J. M. (1989) Non-isotopic RNA probes. Comparison between different labels and detection systems. Histochemistry. 93, 191.PubMedCrossRefGoogle Scholar
  19. 19.
    Cubie, H. A., Grzybowski, J., da-Silva, C., Duncan, L., Brown, T., and Smith, N. M. (1995) Synthetic oligonucleotide cocktails as probes for detection of human parvovirus B19. J. Virol. Methods 53, 91–102.PubMedCrossRefGoogle Scholar
  20. 20.
    Kerstens, H. M., Poddighe, P. J., and Hanselaar, A. G. (1995) A novel in situ hybridization signal amplification method based on the deposition of biotinylated tyramine. J. Histochem. Cytochem. 43, 347–352.PubMedGoogle Scholar
  21. 21.
    Deichmann, M., Bentz, M., and Haas, R. (1997) Ultra-sensitive FISH is a useful tool for studying chronic HIV-1 infection. J. Virol. Methods 65, 19–25.PubMedCrossRefGoogle Scholar
  22. 22.
    Plenat, F., Pichard, E., Antunes, L., Vignaud, J. M., Marie, B., Chalabreysse, P., and Muhale, F. (1997) Amplification of immunologic reactions using catalytic deposition at the reactions sites of tyramine derivatives. A decisive gain in sensitivity in immunohistochemistry and in situ hybridisaton. Ann. Pathol. 17, 17–23.PubMedGoogle Scholar
  23. 23.
    Strappe, P. M., Wang, T. H., McKenzie, C. A., Lowrie, S., Simmonds, P., and Bell, J. E. (1997) Enhancement of immunohistochemical detection of HIV-1 p24 antigen in brain by tyramide signal amplification. J. Virol. Methods 67, 103–112.PubMedCrossRefGoogle Scholar
  24. 24.
    Britten, R. J. and Davidson, E. H. (1985) Hybridization strategy, in Nucleic Acid Hybridization: A Practical Approach (Hames, B. D. and Higgins, S. J., eds.), IRL Press, Oxford, pp. 1–16.Google Scholar
  25. 25.
    McConaughy, B. L., Laird, C. D., and McCarty, B. J. (1969) Nucleic acid reassociation in formamide. Biochemistry 8, 3289–3295.PubMedCrossRefGoogle Scholar
  26. 26.
    Thomas, M., White, R. L., and Davis, R. W. (1976) Hybridization of RNA to double-stranded DNA: formation of R-loops. Proc. Natl. Acad. Sci. USA 73, 2294–2298.PubMedCrossRefGoogle Scholar
  27. 27.
    Bodkin, D. K. and Knudson, D. L. (1985) Sequence relatedness of Palyam virus genes to cognates of the Palyam serogroup viruses by RNA-RNA blot hybridization. Virology 143, 55–62.PubMedCrossRefGoogle Scholar
  28. 28.
    Rogers, A. R. (1979) Techniques in Autoradiography, 3rd ed. Elsevier, North Holland.Google Scholar
  29. 29.
    Henderson, C. (1989) Aminoalkylsilane: an inexpensive, simple preparation for slide adhesion. J. Histochem. 12, 123–124.Google Scholar
  30. 30.
    Wilkinson, D. G. (ed.) (1992) In Situ Hybridization: A Practical Approach. IRL Press, Oxford.Google Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Allison R. Jilbert
    • 1
  1. 1.Hepatitis Virus Research Laboratory, Infectious Diseases LaboratoriesInstitute of Medical and Veterinary ScienceAdelaideAustralia

Personalised recommendations