Skip to main content

Probing RNA-Protein Interactions by Psoralen Photocrosslinking

  • Protocol
RNA-Protein Interaction Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 118))

  • 2161 Accesses

Abstract

RNA molecules can fold into extensive structures containing regions of double-stranded duplex, hairpins, internal loops, bulged bases, and pseudo-knotted structures (1). Owing to the complexity of RNA structure, the rules governing sequence-specific RNA-protein recognition are not well understood. RNA-protein interactions are vital for many regulatory processes, especially in gene regulation where proteins specifically interact with binding sites found within RNA transcripts. In the absence of high-resolution crystallographic and nuclear magnetic resonance data, new methods are needed to determine the topology of RNA-protein complexes under physiological conditions. We have devised a new method based on psoralen photochemistry to identify specific contacts in RNA-protein complexes (2,3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Tinoco, I., Jr., Puglisi, J. D., and Wyatt, J. R. (1990) RNA folding. Nucleic Acids Mol. Biol. 4, 205–226.

    CAS  Google Scholar 

  2. Wang, Z. and Rana, T. M. (1995) Chemical conversion of a TAR RNA-binding fragment of HIV-1 Tat protein into a site-specific crosslinking agent. J. Am. Chem. Soc. 117, 5438–5444.

    Article  CAS  Google Scholar 

  3. Wang, Z., Wang, X., and Rana, T. M. (1996) Protein orientation in the Tat-TAR complex determined by psoralen photocross-linking. J. Biol. Chem. 271, 16,995–16,998.

    Article  PubMed  CAS  Google Scholar 

  4. Cimino, G. D., Gamper, H. B., Isaacs, S. T., and Hearst, J. E. (1985) Psoralens as photoactive probes of nucleic acid structure and function: organic chemistry, photochemistry, and biochemistry. Ann. Rev. Biochem. 54, 1151–1193.

    Article  PubMed  CAS  Google Scholar 

  5. Spielmann, H. P., Dwyer, T. J., Sastry, S. S., Hearst, J. E., and Wemmer, D. E. (1995) DNA structural reorganization upon conversion of a psoralen furan-side monoadduct to an interstrand cross-link: implications for DNA repair. Proc. Natl. Acad. Sci. USA 92, 2345–2349.

    Article  PubMed  CAS  Google Scholar 

  6. Hearst, J. E. (1988) A photochemical investigation of the dynamics of oligonucleotide hybridization. Annu. Rev. Phys. Chem. 39, 291–315.

    Article  PubMed  CAS  Google Scholar 

  7. Gamper, H. B., Cimino, G. D., Isaacs, S. T., Ferguson, M., and Hearst, J. E. (1986) Reverse southern hybridization. Nucleic Acids Res. 14, 9943–9954.

    Article  PubMed  CAS  Google Scholar 

  8. Van Houten, B., Gamper, H. B., Hearst, J. E., and Sancar, A. (1986) Construction of DNA substrates modified with psoralen at a unique site and study of the action of ABC excinuclease on these uniformly modified substrates. J. Biol. Chem. 261, 14,135–14,141.

    PubMed  Google Scholar 

  9. Takasugi, M., Guendouz, A., Chassingnol, M., Decout, J. L., Lhomme, J., Thuong, N. T., and Helene, C. (1991) Sequence-specific photo-induced cross-linking of the two strands of double-helical DNA by a psoralen covalently linked to a triple helix-forming oligonucleotide. Proc. Natl. Acad. Sci. USA 88, 5602–5606.

    Article  PubMed  CAS  Google Scholar 

  10. Lee, B. L., Murakami, A., Blake, K. R., Lin, S.-B., and Miller, P. S. (1988) Interaction of psoralen-derived oligodeoxyribonucleoside methylphosphonates with single-stranded DNA. Biochemistry 27, 3197–3203.

    Article  PubMed  CAS  Google Scholar 

  11. Kean, J. M. and Miller, P. S. (1994) Effect of target structure on cross-linking by psoralen-derivatized oligonucleoside methylphosphonates. Biochemistry 33, 9178–9186.

    Article  PubMed  CAS  Google Scholar 

  12. Youvan, D. C, and Hearst, J. E. (1981) A sequence from Drosophila melanogaster 18S rRNA bearing the conserved hypermodified nucleoside amψ: analysis by reverse transcription and high-performance liquid chromatography. Nucleic Acids Res. 9, 1723–1741.

    Article  PubMed  CAS  Google Scholar 

  13. Youvan, D. C. and Hearst, J. E. (1982) Sequencing psoralen photochemically reactive sites in Escherichia coli 16 S rRNA. Anal. Biochem. 119, 86–89.

    Article  PubMed  CAS  Google Scholar 

  14. Ericson, G. and Wollenzien, P. (1988) Use of reverse transcription to determine the exact locations of psoralen crosslinks in RNA. Anal. Biochem. 174, 215–223.

    Article  PubMed  CAS  Google Scholar 

  15. Burgin, A. B. and Pace, N. R. (1990) Mapping the active site of ribonuclease P RNA using a substrate containing a photoaffinity agent. EMBO J. 9, 4111–4118.

    PubMed  CAS  Google Scholar 

  16. Harris, M. E., Nolan, J. M., Malhotra, A., Brown, J. W., Harvey, S. C, and Pace, N. R. (1994) Use of photoaffinity crosslinking and molecular modeling to analyze the global architecture of ribonuclease P RNA. EMBO J. 13, 3953–3963.

    PubMed  CAS  Google Scholar 

  17. Nolan, J. M., Burke, D. H., and Pace, N. R. (1993) Circularly permutated tRNAs as specific photoaffinity probes of ribonuclease P RNA structure. Science 261, 762–765.

    Article  PubMed  CAS  Google Scholar 

  18. Ericson, G. and Wollenzien, P. (1989) An RNA secondary structure switch between the active and inactive conformations of the Escherichia coli 30S ribosomal unit. J. Biol. Chem. 264, 540–545.

    PubMed  CAS  Google Scholar 

  19. Watkins, K. P., Dungan, J. M., and Agabian, N. (1994) Identification of a small RNA that interacts with the 5′ splice site of the trypanasoma brucei spliced leader RNA in vivo. Cell 76, 171–182.

    Article  CAS  Google Scholar 

  20. Fried, M. and Crothers, D. M. (1981) Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9, 6505–6525.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Wang, Z., Rana, T.M. (1999). Probing RNA-Protein Interactions by Psoralen Photocrosslinking. In: Haynes, S.R. (eds) RNA-Protein Interaction Protocols. Methods in Molecular Biology™, vol 118. Humana Press. https://doi.org/10.1385/1-59259-676-2:49

Download citation

  • DOI: https://doi.org/10.1385/1-59259-676-2:49

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-568-3

  • Online ISBN: 978-1-59259-676-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics