Skip to main content

In Vitro Translation Extracts from Tissue Culture Cells

  • Protocol
RNA-Protein Interaction Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 118))

  • 2182 Accesses

Abstract

The in vitro translation system provides an important means of identifying mRNA species of a gene of interest, characterizing the protein products, and investigating translational control. Rabbit reticulocyte lysate (RRL) or wheat germ lysate have been used to successfully translate protein in response to mRNAs from a variety of species including mammals, plants and phage (1,2). The translation of viral mRNA in cell-free extracts is one of the most powerful tools available for elucidation of virus-specific translational control. The RNA genomes of some viruses including poliovirus are not capped, having instead a long noncoding region at their 5′ end. The translation of such viral mRNAs is initiated by entry of the ribosome within the noncoding region in a cap-independent manner; the site is called the internal ribosome entry site, IRES (3). Poliovirus is not translated in a cell-free translation system prepared from wheat germ, and is translated inefficiently, and usually incorrectly, in RRL. However, poliovirus mRNA is translated efficiently in HeLa cell S10 extract, and in RRL upon adding HeLa cell S100 extract (see Note 1) (47). The cellular factors necessary for poliovirus translation are present in sufficient amounts in HeLa cell S10 extract but not in RRL. Thus, the in vitro system is useful for identification of the factors necessary for poliovirus cap independent translation, such as the La protein (8), poly (rC) binding protein 1 (PCBP 1), and PCBP2 (9,10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walter, P. and Blobel, G. (1983) Cell-free translation of messenger RNA in a wheat germ system. Methods Enzymol. 96, 38–50.

    Article  Google Scholar 

  2. Jackson, R. J. and Hunt, T. (1983) Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol. 96, 50–74.

    Article  PubMed  CAS  Google Scholar 

  3. Pelletier, J. and Sonenberg, N. (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–325.

    Article  PubMed  CAS  Google Scholar 

  4. Jackson, R. J., Howell M. T., and Kaminski, A. (1990) The novel mechanism of initiation of picornavirus RNA translation. Trends Biochem. Sci. 15, 477–488.

    Article  PubMed  Google Scholar 

  5. Brown, B. A. and Ehrenfeld, E. (1979) Translation of poliovirus RNA in vitro: changes in cleavage pattern and initiation sites by ribosomal salt wash. Virology 97: 396–405.

    Article  PubMed  CAS  Google Scholar 

  6. Dorner, A. J., Semler, R. J., Jackson, R., Duprey, E., and Wimmer, E. (1984) In vitro translation of poliovirus RNA: utilization of internal initiation sites in reticulocyte lysate. J. Virol. 50, 507–514.

    PubMed  CAS  Google Scholar 

  7. Villa-Komaroff, L., McDowell, M., Baltimore, D., and Lodish, H. F. (1974) Translation of reovirus mRNA, poliovirus RNA, and bacteriophage QB RNA in cell free extracts of mammalian cells. Methods Enzymol. 30, 709–723.

    Article  PubMed  CAS  Google Scholar 

  8. Meerovitch, K., Pelletier, J., and Sonenberg, N. (1989) A cellular protein that binds to the 5′-noncoding region of poliovirus RNA: implication for internal translation initiation. Genes Dev. 3, 217–227.

    Article  Google Scholar 

  9. Blyn, L. B., Towner, J. S., Semler, B. L., and Ehrenfeld, E. (1997) Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA. J. Virol. 71, 6243–6246.

    PubMed  CAS  Google Scholar 

  10. Gamarnik, A. V. and Andino, P. (1997) Two functional complexes formed by KH domain containing proteins with the 5′ noncoding region of poliovirus RNA. RNA 3, 882–892.

    PubMed  CAS  Google Scholar 

  11. Shiroki, K., Ishii, T., Aoki, T., Ota, Y., Yang, W.-Y., Komatsu, T., Ami, Y., Arita, M., Abe, S., Hashizume, S., and Nomoto, A. (1997) Host range phenotype induced by mutations in the internal ribosomal entry site of poliovirus RNA. J. Virol. 71, 1–81.

    PubMed  CAS  Google Scholar 

  12. Ishii, T., Shiroki, K., Hong, D.-K., Aoki, T., Ohta, Y., Abe, S., Hashizume, S., and Nomoto, A. (1998) A new internal ribosomal entry site 5′ boundary is required for poliovirus translation initiation in a mouse system. J. Virol. 72, 2398–2405.

    PubMed  CAS  Google Scholar 

  13. Iizuka, N., Yonekawa, H., and Nomoto, A. (1991) Nucleotide sequences important for translation initiation of enterovirus RNA. J. Virol. 63, 5354–5363.

    Google Scholar 

  14. Tsukiyama-Kohara, K., Iizuka, N., Kohara, K., and Nomoto, A. (1992) Internal ribosome entry site within hepatitis C virus RNA. J. Virol. 66, 1476-83

    PubMed  Google Scholar 

  15. Shiroki, K., Kato, H., Koike, S., Odaka, T., and Nomoto, A. (1993) Temperature-sensitive mouse cell factors for strand-specific initiation of poliovirus RNA synthesis. J. Virol. 67, 3989–3996.

    PubMed  CAS  Google Scholar 

  16. Koike, S., Horie, H., Ise, H., Okitsu, A., Yoshida, M., Iizuka, N., Takeuchi, T., Takegami, T., and Nomoto, A. (1990) The poliovirus receptor protein is produced both as membrane-bound and secreted forms. EMBO J. 9, 3217–3224.

    PubMed  CAS  Google Scholar 

  17. Kamoshita, N., Tsukiyama-Kohara, K., Kohara, M., and Nomoto, A. (1997) Genetic analysis of internal ribosomal entry site on hepatitis C virus RNA: implication for involvement of the highly-ordered structure and cell type specific transacting factors. Virology 223, 9–18.

    Article  Google Scholar 

  18. Haller, A. A., Stewart, S. R., and Semler, B. L. (1996) Attenuation stem-loop lesions in the 5′ noncoding region of poliovirus RNA: neuronal cell-specific translation defects. J. Virol. 70, 1467–1474.

    PubMed  CAS  Google Scholar 

  19. Svitkin, Y. V., Yu, V. and Agol, V. I. (1978) Complete translation of encephalomyocarditis virus RNA and faithful cleavage of virus-specific proteins in a cell-free system from Krebs-2 cells. FEBS Lett. 87, 7–11.

    Article  PubMed  CAS  Google Scholar 

  20. Haghighat, A., Svitkin, Y., Novoa, I., Kuechler, E., Skern, T., and Sonenberg, N. (1996) The eIF4G-eIF4E complex is the target for direct cleavage by the rhinovirus 2A proteinase. J. Virol. 70, 8444–8450.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Shiroki, K., Nomoto, A. (1999). In Vitro Translation Extracts from Tissue Culture Cells. In: Haynes, S.R. (eds) RNA-Protein Interaction Protocols. Methods in Molecular Biology™, vol 118. Humana Press. https://doi.org/10.1385/1-59259-676-2:449

Download citation

  • DOI: https://doi.org/10.1385/1-59259-676-2:449

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-568-3

  • Online ISBN: 978-1-59259-676-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics