Skip to main content

In Vitro Selection of Aptamers from RNA Libraries

  • Protocol
Book cover RNA-Protein Interaction Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 118))

  • 2197 Accesses

Abstract

Methods of iterative nucleic acid selection and amplification were enabled by the invention of the polymerase chain reaction (PCR). Thus, the ability to amplify as few as a single DNA or RNA molecule made it possible to diversify sequences and to partition the desirable from the undesirable subset (Fig. 1A) (1,2). Initially, this approach was practiced in vivo using biological amplification and selection, by diversification of plasmid sequences and iterative growth against a selective marker (3). The power of in vitro RNA selection from a randomized combinatorial library was demonstrated by Tuerk and Gold (4) using T4 DNA polymerase and the R17 phage coat protein. These investigators called their iterative RNA selection procedure “SELEX.” Ellington and Szostak (5) also derived RNA ligands against organic dyes using iterative in vitro selection. Moreover, the demonstration that RNAs could be selected that bind to proteins and compounds with no known role in RNA-binding in vivo led to the concept of aptamers. An aptamer is a folded RNA that forms a shape that coincidentally fits against another surface, to which it is “apt” to bind. Generally, RNA ligands that bind to naturally occurring RNA-binding domains of proteins are not considered to be aptamers. Unexpectedly, an RNA ligand selected against an antibody generated by immunization with a peptide demonstrated that RNA and protein could crossreact at the level of antibody recognition (6).

(A) A schematic representation of the randomized RNA selection protocol. The sequences of the primers and template are given in (B). The T7 promoter region is labeled T7 pro. DNA and RNA are represented by double lines and single lines, respectively. The number of iterative cycles used varies with the nature of the target molecule and can allow evolution of the target set using error-prone PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oliphant, A. R., Nussbaum, A. I., and Struhl, K. (1986) Cloning of random-sequence oligodeoxynucleotides for determining consensus sequences. Gene 44, 177–183.

    Article  PubMed  CAS  Google Scholar 

  2. Oliphant, A. R. and Struhl, K. (1987) The use of random-sequence oligonucleotides for determining consensus sequences. Methods Enzymol. 155, 568–581.

    Article  PubMed  CAS  Google Scholar 

  3. Horwitz, M. S. Z. and Loeb, L. A. (1986) Promoters selected from random DNA sequences. Proc. Natl. Acad. Sci. USA 83, 7405–7409.

    Article  PubMed  CAS  Google Scholar 

  4. Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510.

    Article  PubMed  CAS  Google Scholar 

  5. Ellington, A. D. and Szostak, J. W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822.

    Article  PubMed  CAS  Google Scholar 

  6. Tsai, D. E., Kenan, D. J., and Keene, J. D. (1992) In vitro selection of an RNA epitope immunologically cross-reactive with a peptide. Proc. Natl. Acad. Sci. USA 89, 8864–8868.

    Article  PubMed  CAS  Google Scholar 

  7. Keene, J. D. (1996) RNA surfaces as functional mimetics of proteins. Chem. Biol. 3, 505–514.

    Article  PubMed  CAS  Google Scholar 

  8. Bartel, D. P., Zapp, M. L., Green, M. R., and Szostak, J. W. (1991) HIV-1 Rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA. Cell 67, 529–536.

    Article  PubMed  CAS  Google Scholar 

  9. Tsai, D. E., Harper, D. S., and Keene, J. D. (1991) U1-snRNP-A protein selects a ten nucleotide consensus sequence from a degenerate RNA pool presented in various structural contexts. Nucleic Acids Res. 19, 4931–4936.

    Article  PubMed  CAS  Google Scholar 

  10. Levine, T. D., Gao, F., Andrews, L., King, P. H., and Keene, J. D. (1993) Hel-N1: an autoimmune RNA-binding protein with specificity for 3′ uridylate-rich untranslated regions of growth factor mRNAs. Mol. Cell. Biol. 13, 3494–3504.

    PubMed  CAS  Google Scholar 

  11. Buckanovich, R. J. and Darnell, R. B. (1997) The neuronal RNA binding protein Nova-l recognizes specific RNA targets in vitro and in vivo. Mol. Cell. Biol. 17, 3194–3201.

    PubMed  CAS  Google Scholar 

  12. Gao, F. B., Carson, C. C., Levine, T., and Keene J. D. (1994) Selection of a subset of mRNAs from combinatorial 3′ untranslated region libraries using neuronal RNA-binding protein Hel-N1. Proc. Natl. Acad. Sci. USA 91, 11,207–11,211.

    Article  PubMed  CAS  Google Scholar 

  13. Gold, L., Brown, D., He, Y., Shtatland, T., Singer, B. S., and Wu, Y. (1997) From oligonucleotide shapes to genomic SELEX: novel biological regulatory loops. Proc. Natl. Acad. Sci. USA 94, 59–64.

    Article  PubMed  CAS  Google Scholar 

  14. Kenan, D. J., Tsai, D. E., and Keene, J. D. (1994) Exploring molecular diversity with combinatorial shape libraries. Trends Biochem. Sci. 19, 57–64.

    Article  PubMed  CAS  Google Scholar 

  15. Lander, E. S. (1996) The new genomics: global views of biology. Science 274, 536–539.

    Article  PubMed  CAS  Google Scholar 

  16. Czarnik, A. W. and Keene, J. D. (1998) Combinatorial chemistry: a primer. Curr. Biol. 8, R705–R707.

    Article  PubMed  CAS  Google Scholar 

  17. Milligan, J. F. and Uhlenbeck, O. C. (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51–62.

    Article  PubMed  CAS  Google Scholar 

  18. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  19. Chamberlin, M. and Ring, J. (1973) Characterization of T7-specific ribonucleic acid polymerase. 1. General properties of the enzymatic reaction and the template specificity of the enzyme. J. Biol. Chem. 248, 2235–2244.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Kenan, D.J., Keene, J.D. (1999). In Vitro Selection of Aptamers from RNA Libraries. In: Haynes, S.R. (eds) RNA-Protein Interaction Protocols. Methods in Molecular Biology™, vol 118. Humana Press. https://doi.org/10.1385/1-59259-676-2:217

Download citation

  • DOI: https://doi.org/10.1385/1-59259-676-2:217

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-568-3

  • Online ISBN: 978-1-59259-676-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics