Skip to main content

Use of Gene Targeting to Study Recombination in Mammalian DNA Repair Mutants

  • Protocol
DNA Repair Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 113))

  • 917 Accesses

Abstract

Gene targeting, defined as homologous recombination or genetic exchange between an introduced DNA sequence and its endogenous chromosomal locus, or “target,” is a powerful approach for genetic manipulation. Gene-targeting strategies for both yeast (1) and mammalian cells (24) have been described that allow correction, disruption, deletion, replacement, or site-directed modification of virtually any gene or chromosomal locus for which a cloned sequence is available. The majority of mammalian gene-targeting studies have been directed toward disruption (“knockout”) of a selected target gene locus in mouse embryo stem (ES) cells (4,5), with the primary objective of obtaining the desired mutant mouse as quickly as possible. Relatively few studies have examined targeted recombination in cell types other than mouse ES cells. This chapter describes methods and use of targeted recombination as an approach to study mechanisms of recombination in cultured mammalian cells, and, in particular, the use of gene-targeting approaches to generate and analyze DNA repair-deficient knockout mutants to reveal interactions between DNA repair and recombinational pathways in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rothstein, R. (1991) Targeting, disruption, replacement, and allele rescue: Integrative DNA transformation in yeast. Methods Enzymol. 194, 281–301.

    Article  PubMed  CAS  Google Scholar 

  2. Capecchi, M. R. (1989) Altering the genome by homologous recombination. Science 244, 1288–1292.

    Article  PubMed  CAS  Google Scholar 

  3. Waldman, A. S. (1992) Targeted homologous recombination in mammalian cells. Crit. Rev. Oncol. Hematol. 12, 49–64.

    Article  PubMed  CAS  Google Scholar 

  4. Ramirez-Solis, R., Davis, A. C, and Bradley, A. (1993) Gene targeting in embryonic stem cells. Methods Enzymol. 225, 855–879.

    Article  PubMed  CAS  Google Scholar 

  5. Capecchi, M. R. (1989) The new mouse genetics: altering the genome by gene targeting. Trends Genet. 5, 70–76.

    Article  PubMed  CAS  Google Scholar 

  6. Schiestl, R. H. and Prakash, S. (1988) RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination. Mol. Cell. Biol. 8, 3619–3626.

    PubMed  CAS  Google Scholar 

  7. Schiestl, R. H. and Prakash., S. (1990) RAD10 an excision repair gene of Saccharomyces cerevisiae is involved in the RAD1 pathway of mitotic recombination. Mol. Cell. Biol. 10, 2485–2491.

    PubMed  CAS  Google Scholar 

  8. Fishman-Lobell, J. and Haber, J. E. (1992) Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258, 480–484.

    Article  PubMed  CAS  Google Scholar 

  9. Ivanov, E. L. and Haber, J. E. (1995) RAD1 and RAD10, but not other excision repair genes are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 2245–2251.

    PubMed  CAS  Google Scholar 

  10. Nairn, R. S., Humphrey, R. M., and Adair, G. M. (1988) Transformation depending on intermolecular homologous recombination is stimulated by UV damage in transfected DNA. Mutat. Res. 208, 137–141.

    Article  PubMed  CAS  Google Scholar 

  11. Nairn, R. S., Adair, G. M., Christmann, C. B., and Humphrey, R. M. (1991) UV stimulation of intermolecular homologous recombination in CHO cells. Mol. Carcinog. 4, 519–526.

    Article  PubMed  CAS  Google Scholar 

  12. Nairn, R. S., Adair, G. M., Porter, T., Pennington, S. L., Smith, D. G. Wilson J. H., and Seidman, M. M. (1993) Targeting vector configuration and method of gene transfer influence targeted correction of the APRT gene in Chinese hamster ovary cells. Somat. Cell Mol. Genet. 19, 363–375.

    Article  PubMed  CAS  Google Scholar 

  13. Sargent, R. G., Rolig, R. L., Kilburn, A. E., Adair, G. M., Wilson, J. H., and Naivn, R. S. (1997) Proc. Recombination-dependent deletion formation in mammalian cells deficient in the nucleotide excision repair gene ERCC1. Natl. Acad. Sci. USA 94, 13,122–13,127.

    Article  CAS  Google Scholar 

  14. Adair, G. M. and Nairn, R. S. (1995) Gene targeting, in: DNA Repair Mechanisms: Impact on Human Diseases and Cancer (Vos, J.-M., ed.), Biomedical Landes Co., Austin, TX, pp. 301–328.

    Google Scholar 

  15. Rolig, R. L., Layher, S. K., Santi, B., Adair, G. M., Gu, F., Rainbow, A. J., et al. (1997) Survival, mutagenesis, and host cell reactivation in a Chinese hamster ovary cell ERCC1 knock-out mutant. Mutagenesis 12, 277–283.

    Article  PubMed  CAS  Google Scholar 

  16. Gottesman, M. M. (ed.) (1985) Molecular Cell Genetics. John Wiley, New York.

    Google Scholar 

  17. O’Neill, J. P., Couch, D. B., Machanoff, R., San Sebastion, J. R., Brimer, P. A., and Hsie, A. W. (1977) A quantitative assay of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase locus in Chinese hamster ovary cells (CHO/HGPRT system): utilization with a variety of mutagenic agents. Mutat. Res. 45, 103–109.

    Google Scholar 

  18. Siciliano, M. J., Stallings, R. L., Humphrey, R. M., and Adair, G. M. (1986) Mutation in somatic cells as determined by electrophoretic analysis of mutagen-exposed Chinese hamster ovary cells, in Chemical Mutagens, vol. 10 (de Serres, F. J., ed.), Plenum, New York, pp. 509–531.

    Google Scholar 

  19. Thompson, L. H. Bachinski, L. L., Stallings, R. L., Dolf, G., Weber, C. A., Westerfeld, A., and Siciliano, M. J. (1989) Complementation of repair gene mutations on the hemizygous chromosome 9 in CHO: a third repair gene on human chromosome 19. Genomics 5, 670–679.

    Article  PubMed  CAS  Google Scholar 

  20. te Riele, H., Maandag, E. R., and Berns, A. (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl. Acad. Sci. USA 89, 5128–5132.

    Article  Google Scholar 

  21. Deng, C. and Capecchi, M. R. (1992) Re-examination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell. Biol. 12, 3365–3371.

    PubMed  CAS  Google Scholar 

  22. van Duin, M., de Wit, J., Odjik, H., Westerveld, A., Yasui, A., Koken, M. H., et al. (1986) Molecular characterization of the human excision repair gene ERCC1: cDNA cloning and amino acid homology with the yeast DNA repair gene RAD10. Cell 44, 913–923.

    Article  PubMed  Google Scholar 

  23. Adair, G. M., Scheerer, J. B., Brotherman, A., McConville, S., Wilson, J. H., and Naivn, R. S. (1998) Targeted recombination at the Chinese hamster APRT locus using insertion versus replacement vectors. Somat. Cell Mol. Genet. 24, 91–105.

    Article  PubMed  CAS  Google Scholar 

  24. Adair, G. M., Nairn, R. S., Wilson, J. H., Scheerer, J. B., and Brotherman, K. A. (1990) Targeted gene replacement at the endogenous APRT locus in CHO cells. Somat. Cell Mol. Genet. 16, 437–441.

    Article  PubMed  CAS  Google Scholar 

  25. Hasty, P., Ramirez-Solis, R., Krumlauf, R., and Bradley, A. (1991) Introduction of a subtle mutation into the Hox-2. 6 locus in embryonic stem cells. Nature 350, 243–246.

    Article  PubMed  CAS  Google Scholar 

  26. Valancius, V. and Smithies, O. (1991) Testing an “in-out” targeting procedure for making subtle genomic modifications in mouse embryonic stem cells. Mol. Cell. Biol. 11, 1402–1408.

    PubMed  CAS  Google Scholar 

  27. Scheerer, J. B. and Adair, G. M. (1994) The homology dependence of targeted recombination at the Chinese hamster APRT locus. Mol. Cell. Biol. 14, 6663–6673.

    PubMed  CAS  Google Scholar 

  28. Hasty, P., Rivera-Perez, J., and Bradley, A. (1991) The length of homology required for gene targeting in embryonic stem cells. Mol. Cell. Biol. 11, 5586–5591.

    PubMed  CAS  Google Scholar 

  29. Mansour, S. L., Thomas, K. T., and Capecchi, M. R. (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to nonselectable genes. Nature 336, 348–352.

    Article  PubMed  CAS  Google Scholar 

  30. Adair, G. M., Nairn, R. S., Wilson, J. H., Seidman, M. M., Brotherman, K. A., MacKinnon, C., et al. (1989) Targeted homologous recombination at the endogenous adenine phosphoribosyltransferase locus in Chinese hamster cells. Proc. Natl. Acad. Sci. USA 86, 4574–4578.

    Article  PubMed  CAS  Google Scholar 

  31. Porter, T., Pennington, S., Adair, G. M., Nairn, R. S., and Wilson, J. H. (1990) A novel selection system for recombinational and mutational events within an intron of a eucaryotic gene. Nucleic Acids Res. 18, 5173–5180.

    Article  PubMed  CAS  Google Scholar 

  32. Pennington, S. L. and Wilson, J. H. (1991) Gene targeting in Chinese hamster ovary cells is conservative. Proc. Natl. Acad. Sci. USA 88, 9498–9502.

    Article  PubMed  CAS  Google Scholar 

  33. Aratani, Y., Okazaki, R., and Koyama, H. (1992) End extension repair of introduced targeting vectors mediated by homologous recombination in mammalian cells. Nucleic Acids Res. 20, 4795–4801.

    Article  PubMed  CAS  Google Scholar 

  34. Fujioka, K-I., Aratani, Y., Kusano, K., and Koyama, H. (1993) Targeted recombination with single-stranded DNA vectors in mammalian cells. Nucleic Acids Res. 21, 407–412.

    Article  PubMed  CAS  Google Scholar 

  35. Wang, Q. and Taylor, M. W. (1993) Correction of a deletion mutant by gene targeting with an adenovirus vector. Mol. Cell. Biol. 13, 918–927.

    PubMed  CAS  Google Scholar 

  36. Waldman, B. C., O’Quinn, J. R., and Waldman, A. S. (1996) Enrichment for gene targeting in mammalian cells by inhibition of poly(ADP-ribosylation). Biochim. Biophys. Acta. 1308, 241–250.

    PubMed  Google Scholar 

  37. Chu, G., Hayakawa, H., and Berg, P. (1987) Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 15, 1311–1326.

    Article  PubMed  CAS  Google Scholar 

  38. Thomas, K. R. and Capecchi, M. R. (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512.

    Article  PubMed  CAS  Google Scholar 

  39. Adair, G. M., Stallings, R. L., Nairn, R. S., and Siciliano, M. J. (1983) High-frequency structural gene deletion as the basis for functional hemizygosity of the adenine phosphoribosyltransferase locus in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. U. S. A. 80, 5961–5964.

    Article  PubMed  CAS  Google Scholar 

  40. Smith, D. G. and Adair, G. M. (1996) Characterization of an apparent hotspot for spontaneous mutation in exon 5 of the Chinese hamster APRT gene. Mutat. Res. 352, 87–96.

    PubMed  Google Scholar 

  41. Sargent, R. G., Merrihew, R. V., Nairn, R. S., Adair, G. M., Meuth, M., and Wilson, J. H. (1996) The influence of a (GT)29 microsatellite sequence on homologous recombination in the hamster APRT gene. Nucleic Acids Res. 24, 746–753.

    PubMed  CAS  Google Scholar 

  42. Mulligan, R., and Berg, P. (1981) Expression of a bacterial gene in mammalian cells. Proc. Natl. Acad. Sci. USA 78, 2072–2076.

    Article  PubMed  CAS  Google Scholar 

  43. Lowy, I., Pellicer, A., Jackson, J., Sim, G., Silverstein, S., and Axel, R. (1980) Isolation of transforming DNA: cloning of the hamster aprt gene. Cell 22, 817–823.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Nairn, R.S., Adair, G.M. (1999). Use of Gene Targeting to Study Recombination in Mammalian DNA Repair Mutants. In: Henderson, D.S. (eds) DNA Repair Protocols. Methods in Molecular Biology™, vol 113. Humana Press. https://doi.org/10.1385/1-59259-675-4:499

Download citation

  • DOI: https://doi.org/10.1385/1-59259-675-4:499

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-802-8

  • Online ISBN: 978-1-59259-675-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics