Skip to main content

Physical Monitoring of HO-Induced Homologous Recombination

  • Protocol
DNA Repair Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 113))

  • 976 Accesses

Abstract

The repair of chromosomal double-strand breaks (DSBs) in Saccharomyces cerevisiae occurs most efficiently by homologous recombination. Homothallic mating-type (MAT) switching provides the most well-characterized system to study DSB repair by recombination in mitotic cells (1,2,3). MAT switching is a genetically programmed event in yeast haploid cells, initiated by the site-specific HO endonuclease (Fig. 1). This creates a DSB at MAT that can be repaired by homologous donor sequences, HMLα or HMR a, located near the ends of the same chromosome. These donor loci are maintained in a silent chromatin structure that prevents both their transcription and cleavage by HO, though they can still serve as donors in recombination. Most of the time MAT a cells use HMLα and thus switch to MATα, whereas MATα cells use HMR a to switch to MAT a. This change of mating type can be scored genetically and molecularly, since Y a and Yα sequences are different and have restriction endonuclease polymorphisms (Fig. 1).

Molecular model of mating type switching. A DSB is induced at the Y/Z junction by HO endonuclease. 5′–3′ Exonucleolytic degradation creates a 3′ single-stranded tail that invades the homologous silent donor sequence, HMLα. Strand invasion and repair synthesis can be monitored using a unique set of primers (pB and pA), located distal to MAT, and within HMLα. Final product formation can also be detected by PCR using MAT-proximal and Yα primers (pD and pC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kostriken, R., Strathern, J. N., Klar, A. J. S., Hicks, J. B., and Heffron, F. (1983) A site-specific endonuclease essential for mating-type switching in Saccharomyces cerevisiae. Cell 35, 167–174.

    Article  PubMed  CAS  Google Scholar 

  2. Raveh, D., Shafer, B. K., and Strathern, J. N. (1988) Analysis of the HO-cleaved MAT DNA intermediates generated during the mating-type switch in the yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 220, 33–42.

    Google Scholar 

  3. Haber, J. E. (1995) In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases. BioEssays 17, 609–620.

    Article  PubMed  CAS  Google Scholar 

  4. Jenson, R. E. and Herskowitz, I. (1984) Directionality and regulation of cassette substitution in yeast. Cold Spring Harbor Symp. Quant. Biol. 49, 97–104.

    Google Scholar 

  5. Rudin, N. and Haber, J. E. (1988) Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol. Cell. Biol. 8, 3918–3928.

    PubMed  CAS  Google Scholar 

  6. White, C. I. and Haber, J. E. (1990) Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9, 663–674.

    PubMed  CAS  Google Scholar 

  7. Sugawara, N. and Haber, J. E. (1992) Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol. Cell. Biol. 12, 563–575.

    PubMed  CAS  Google Scholar 

  8. Ray, B. L., White, C. I., and Haber, J. E. (1991) Heteroduplex formation and mismatch repair of the “stuck” mutation during mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 5372–5380.

    PubMed  CAS  Google Scholar 

  9. Ivanov E. L., Sugawara, N., White, C. I., Fabre, F., and Haber, J. E. (1994) Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 3414–3425.

    PubMed  CAS  Google Scholar 

  10. Sun, H., Treco, D., Schultes, N. P., and Szostak, J. W. (1989) Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338, 87–90.

    Article  PubMed  CAS  Google Scholar 

  11. Viret, J.-F. and Alonso, J. C. (1987) Generation of linear multigenome-length plasmid molecules in Bacillus subtilis. Nucleic Acids Res. 15, 6349–6367.

    Article  PubMed  CAS  Google Scholar 

  12. Sugawara, N., Ivanov, E. L., Fishman-Lobell, J., Ray, B. L., Wu, X., and Haber, J. E. (1995) DNA structure-dependent requirements for yeast RAD genes in gene conversion. Nature 373, 84–86.

    Article  PubMed  CAS  Google Scholar 

  13. Bailis, A. M., Maines, S., and Negritto, M. T. (1995) The essential helicase gene RAD3 suppresses short-sequence recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 3998–4008.

    PubMed  CAS  Google Scholar 

  14. Negritto, M. T., Wu, X., Kuo, T., Chu, S., and Bailis, A. M. (1997) Influences of DNA sequence identity on efficiency of targeted gene replacement. Mol. Cell. Biol. 17, 278–286.

    PubMed  CAS  Google Scholar 

  15. Leung, W., Malkova, A., and Haber, J. E. (1997) Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc. Natl. Acad. Sci. USA 94, 6851–6856.

    Article  PubMed  CAS  Google Scholar 

  16. Osman, F., Fortunato, E. A., and Subramani, S. (1996) Double-strand break-induced mitotic intrachromosomal recombination in the fission yeast Schizo-saccharomyces pombe. Genetics 142, 341–357.

    PubMed  CAS  Google Scholar 

  17. Umezu, K., Sugawara, N., Chen, C., Haber, J. E., and Kolodner, R. D. (1998) Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics 148, 989–1005.

    PubMed  CAS  Google Scholar 

  18. Kolodkin, A. L., Klar, A. J., and Stahl, F. W. (1986) Double-strand breaks can initiate meiotic recombination in S. cerevisiae. Cell 46, 733–740.

    Article  PubMed  CAS  Google Scholar 

  19. Nickoloff, J. A., Singer, J. D., Hoekstra, M. F., and Heffron, F. (1989) Double-strand breaks stimulate alternative mechanisms of recombination repair. J. Mol. Biol. 207, 527–541.

    Article  PubMed  CAS  Google Scholar 

  20. Ozenberger, B. A., and Roeder, G. S. (1991) A unique pathway of double-strand break repair operates in tandemly repeated genes. Mol. Cell. Biol. 11, 1222–1231.

    PubMed  CAS  Google Scholar 

  21. McGill, C. B., Shafer B. K., Derr, L. K., and Strathern, J. N. (1993) Recombination initiated by double-strand breaks. Curr. Genet. 23, 305–314.

    Article  PubMed  CAS  Google Scholar 

  22. Halbrook, J., and Hoekstra, M. F. (1994) Mutations in the Saccharomyces cerevisiae CDC1 gene affect double-strand-break-induced intrachromosomal recombination. Mol. Cell. Biol. 14, 8037–8050.

    PubMed  CAS  Google Scholar 

  23. Strathern, J. N., Shafer, B. K., and McGill, C. B. (1995) DNA synthesis errors associated with double-strand-break repair. Genetics 140, 965–972.

    PubMed  CAS  Google Scholar 

  24. Firmenich, A. A., Elias-Arnanz, M., and Berg, P. (1995) A novel allele of Saccharomyces cerevisiae RFA1 that is deficient in recombination and repair and suppressible by RAD52. Mol. Cell. Biol. 15, 1620–1631.

    PubMed  CAS  Google Scholar 

  25. Milne, G. T., Jin, S., Shannon, K. B., and Weaver, D. T. (1996) Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 4189–4198.

    PubMed  CAS  Google Scholar 

  26. Nelson, H. H., Sweetser, D. B., and Nickoloff, J. A. (1996) Effects of terminal nonhomology and homeology on double-strand-break-induced gene conversion tract directionality. Mol. Cell. Biol. 16, 2951–2957.

    PubMed  CAS  Google Scholar 

  27. Chiurazzi, M., Ray, A., Viret, J. F., Perera, R., Wang, X. H., Lloyd, A. M., et al. (1996) Enhancement of somatic intrachromosomal homologous recombination in Arabidopsis by the HO endonuclease. Plant Cell 8, 2057–2066.

    Article  PubMed  CAS  Google Scholar 

  28. Bennett, C. B., Westmoreland, T. J., Snipe, J. R., and Resnick, M. A. (1996) A double-strand break within a yeast artificial chromosome (YAC) containing human DNA can result in YAC loss, deletion, or cell lethality. Mol. Cell. Biol. 16, 4414–4425.

    PubMed  CAS  Google Scholar 

  29. Moore, J. K. and Haber, J. E. (1996) Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature 383, 644–646.

    Article  PubMed  Google Scholar 

  30. Teng, S. C, Kim, B., and Gabriel, A. (1996) Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature 383, 641–644.

    Article  PubMed  Google Scholar 

  31. Fishman-Lobell, J., Rudin, N., and Haber, J. E. (1992) Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol. Cell. Biol. 12, 1292–1303.

    PubMed  CAS  Google Scholar 

  32. Moore, J. K. and Haber J. E. (1996) Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2164–2173.

    PubMed  CAS  Google Scholar 

  33. Kramer, K. M., Brock J. A., Bloom, K, Moore, J. K., and Haber J. E. (1994) Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol. Cell. Biol. 14, 1293–1301.

    PubMed  CAS  Google Scholar 

  34. Sandell, L. L. and Zakian, V. A. (1993) Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75, 729–739.

    Article  PubMed  CAS  Google Scholar 

  35. Malkova, A., Ross, L., Dawson, D., Hoekstra, M. F., and Haber, J. E. (1996) Meiotic recombination initiated by a double-strand break in rad50Δ yeast cells otherwise unable to initiate meiotic recombination. Genetics 143, 741–754.

    PubMed  CAS  Google Scholar 

  36. Butler, D. K, Yasuda, L. E., and Yao, M. C. (1996) Induction of large DNA palindrome formation in yeast: implications for gene amplification and genome stability in eukaryotes. Cell 87, 1115–1122.

    Article  PubMed  CAS  Google Scholar 

  37. Sherman, F., Fink, G. R., and Hicks, J. B. (1986) Methods in Yeast Genetics: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  38. Mc Donnell, M. W., Simon, M. N, and Studier, W. F. (1977) Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels. J. Mol. Biol. 110, 119–146.

    Article  Google Scholar 

  39. Maniatis, T., Fritsch, E. F., and Sambrook, J. (1983) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  40. Church, G. M. and Gilbert, W. (1984) Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995.

    Article  PubMed  CAS  Google Scholar 

  41. Feinberg, A. P. and Vogelstein, B. (1984) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137, 266–267 (Addendum).

    Article  PubMed  CAS  Google Scholar 

  42. Melton, D. A., Krieg, P. A., Rebagliati, M. R., Maniatis, T., Zinn, K., and Green, M. R. (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage λ SP6 promoter. Nucleic Acids Res. 12, 7035–7056.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Holmes, A., Haber, J.E. (1999). Physical Monitoring of HO-Induced Homologous Recombination. In: Henderson, D.S. (eds) DNA Repair Protocols. Methods in Molecular Biology™, vol 113. Humana Press. https://doi.org/10.1385/1-59259-675-4:403

Download citation

  • DOI: https://doi.org/10.1385/1-59259-675-4:403

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-802-8

  • Online ISBN: 978-1-59259-675-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics