Skip to main content

Assay for Nucleotide Excision Repair Protein Activity Using Fractionated Cell Extracts and UV-Damaged Plasmid DNA

  • Protocol
DNA Repair Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 113))

Abstract

Mammalian cells remove carcinogenic damage caused to DNA by ultraviolet (UV) light and certain other mutagens mainly by using the pathway known as nucleotide excision repair (NER). This involves damage recognition, unwinding of the DNA around the site of damage, incision on either side of the lesion, removal of a fragment containing the lesion, and finally DNA synthesis and ligation to form a repair patch of ∼30 nucleotides. The use of purified proteins and reconstituted systems has revealed the protein components that are essential for the core dual-incision reaction (1). XPA and the single-strand binding protein replication protein A (RPA) associate with each other and preferentially bind to damaged DNA. XPC, which usually exists bound to its partner protein hHR23B, is also involved in damage recognition. TFIIH, a transcription initiation complex, which includes the XPB and XPD helicases as subunits (2), is involved in local opening of DNA around the site of damage (3). The incisions are made by two structure-specific endonucleases, XPG and the ERCC1-XPF complex (46). These proteins cleave the damaged strand of the unwound DNA 3′ and 5′ to the lesion respectively. A fragment of ∼24–32 nucleotides containing the lesion is released and the gap is filled by a DNA repair synthesis reaction involving the proliferating cell nuclear antigen-(PCNA) dependent DNA polymerase δ or ε holoenzyme (7) using the undamaged strand as a template, and the patch is joined by a DNA ligase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wood, R. D. (1997) Nucleotide excision repair in mammalian cells. J. Biol. Chem. 272, 23,465–23,468.

    Article  PubMed  CAS  Google Scholar 

  2. Svejstrup, J., Vichi, P., and Egly, J.-M. (1996) The multiple roles of transcription/repair factor TFIIH. Trends Biochem. Sci. 21, 346–350.

    PubMed  CAS  Google Scholar 

  3. Evans, E., Moggs, J. G., Hwang, J. R., Egly, J.-M., and Wood, R. D. (1997) Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J. 16, 6559–6573.

    Article  PubMed  CAS  Google Scholar 

  4. O’Donovan, A., Davies, A. A., Moggs, J. G., West, S. C., and Wood, R. D. (1994) XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature 371, 432–435.

    Article  Google Scholar 

  5. Mu, D., Hsu, D. S., and Sancar, A. (1996) Reaction-mechanism of human DNA-repair excision nuclease. J. Biol. Chem. 271, 8285–8294.

    Article  PubMed  CAS  Google Scholar 

  6. Sijbers, A. M., de Laat, W. L., Ariza, R. R., Biggerstaff, M., Wei, Y.-F., Moggs, J. G., et al. (1996) Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86, 811–822.

    Article  PubMed  CAS  Google Scholar 

  7. Wood, R. and Shivji, M. (1997) Which DNA polymerases are used for DNA repair in eukaryotes? Carcinogenesis 18, 605–610.

    Article  PubMed  CAS  Google Scholar 

  8. Wood, R. D., Robins, P., and Lindahl, T. (1988) Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts. Cell 53, 97–106.

    Article  PubMed  CAS  Google Scholar 

  9. Sibghat-Ullah, Husain, I., Carlton, W., and Sancar, A. (1989) Human nucleotide excision repair in vitro: repair of pyrimidine dimers, psoralen and cisplatin adducts by HeLa cell-free extract. Nucleic Acids Res. 17, 4471–4484.

    Article  CAS  Google Scholar 

  10. Biggerstaff, M. and Wood, R. D. (1992) Requirement for ERCC-1 and ERCC-3 gene products in DNA excision repair in vitro: complementation using rodent and human cell extracts. J. Biol. Chem. 267, 6879–6885.

    PubMed  CAS  Google Scholar 

  11. Shivji, M. K. K., Kenny, M. K., and Wood, R. D. (1992) Proliferating cell nuclear antigen is required for DNA excision repair. Cell 69, 367–374.

    Article  PubMed  CAS  Google Scholar 

  12. Wang, Z., Wu, X., and Friedberg, E. C. (1991) Nucleotide excision repair of DNA by human cell extracts is suppressed in reconstituted nucleosomes. J. Biol. Chem. 266, 22,472–22,478.

    PubMed  CAS  Google Scholar 

  13. Masutani, C., Sugasawa, K., Asahina, H., Tanaka, K. and Hanaoka, F. (1993) Cell-free repair of UV-damaged simian virus 40 chromosomes in human cell extracts 2. Defective-DNA repair synthesis by xeroderma pigmentosum cell extracts. J. Biol. Chem. 268, 9105–9109.

    PubMed  CAS  Google Scholar 

  14. Gaillard, P. H. L., Martini, E. M. D., Kaufman, P. D., Stillman, B., Moustacchi, E., and Almouzni, G. (1996) Chromatin assembly coupled to DNA-repair-a new role for chromatin assembly factor-I. Cell 86, 887–896.

    Article  PubMed  CAS  Google Scholar 

  15. Wang, Z. G., Wu, X. H., and Friedberg, E. C. (1993) Nucleotide-excision repair of DNA in cell-free-extracts of the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90, 4907–4911.

    Article  PubMed  CAS  Google Scholar 

  16. He, Z. G., Wong, J. M. S., Maniar, H. S., Brill, S. J., and Ingles, C. J. (1996) Assessing the requirements for nucleotide excision-repair proteins of Saccharomyces-cerevisiae in an in-vitro system. J. Biol. Chem. 271, 28,243–28,249.

    Article  PubMed  CAS  Google Scholar 

  17. Shivji, M. K. K., Grey, S. J., Strausfeld, U. P., Wood, R. D., and Blow, J. J. (1994) Cip1 inhibits DNA replication but not PCNA-dependent nucleotide excision repair. Curr. Biol. 4, 1062–1068.

    Article  PubMed  CAS  Google Scholar 

  18. Gaillard, P.-H. L., Moggs, J. G., Roche, D. M. J., Quivy, J.-P., Becker, P. B., Wood, R. D., et al. (1997) Initiation and bidirectional propagation of chromatin assembly from a target site for nucleotide excision repair. EMBO J. 16, 6281–6289.

    Article  PubMed  CAS  Google Scholar 

  19. Barret, J. M., Calsou, P., Laurent, G. and Salles, B. (1996) DNA-repair activity in protein extracts of fresh human-malignant lymphoid-cells. Mol. Pharmacol. 49, 766–771.

    PubMed  CAS  Google Scholar 

  20. Biggerstaff, M., Szymkowski, D. E., and Wood, R. D. (1993) Co-correction of the ERCC1, ERCC4 and xeroderma pigmentosum group F DNA repair defects in vitro. EMBO J. 12, 3685–3692.

    PubMed  CAS  Google Scholar 

  21. Biggerstaff, M., Robins, P., Coverley, D., and Wood, R. D. (1991) Effect of exogenous DNA fragments on human cell extract-mediated DNA repair synthesis. Mutat. Res. 254, 217–224.

    PubMed  CAS  Google Scholar 

  22. Asahara, H., Wistort, P. M., Bank, J. F., Bakerian, R. H., and Cunningham, R. P. (1989) Purification and characterization of Escherichia coli endonuclease III from the cloned nth gene. Biochemistry 28, 4444–4449.

    Article  PubMed  CAS  Google Scholar 

  23. Henricksen, L., Umbricht, C., and Wold, M. (1994) Recombinant replication protein-A-expression, complex-formation, and functional-characterization. J. Biol. Chem. 269, 11,121–11,132.

    PubMed  CAS  Google Scholar 

  24. Fien, K. and Stillman, B. (1992) Identification of replication factor C from Saccharomyces cerevisiae: a component of the leading-strand DNA replication complex. Mol. Cell. Biol. 12, 155–163.

    PubMed  CAS  Google Scholar 

  25. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., et al. (1989) Current Protocols in Molecular Biology, section 1. 7. 6. Greene Publishing Associates and Wiley-Interscience, New York.

    Google Scholar 

  26. Manley, J. L., Fire, A., Samuels, M., and Sharp, P. A. (1983) In vitro transcription: whole cell extract. Methods Enzymol. 101, 568–582.

    Article  PubMed  CAS  Google Scholar 

  27. Manley, J. L. (1983) Transcription of eukaryotic genes in a whole-cell extract, in Transcription and Translation: A Practical Approach (Hames, B. D. and Higgins, S. J., eds.), IRL, Oxford, pp. 71–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Biggerstaff, M., Wood, R.D. (1999). Assay for Nucleotide Excision Repair Protein Activity Using Fractionated Cell Extracts and UV-Damaged Plasmid DNA. In: Henderson, D.S. (eds) DNA Repair Protocols. Methods in Molecular Biology™, vol 113. Humana Press. https://doi.org/10.1385/1-59259-675-4:357

Download citation

  • DOI: https://doi.org/10.1385/1-59259-675-4:357

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-802-8

  • Online ISBN: 978-1-59259-675-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics