Use of Gene Targeting to Study Recombination in Mammalian DNA Repair Mutants

  • Rodney S. Nairn
  • Gerald M. Adair
Part of the Methods in Molecular Biology™ book series (MIMB, volume 113)


Gene targeting, defined as homologous recombination or genetic exchange between an introduced DNA sequence and its endogenous chromosomal locus, or “target,” is a powerful approach for genetic manipulation. Gene-targeting strategies for both yeast (1) and mammalian cells (2, 3, 4) have been described that allow correction, disruption, deletion, replacement, or site-directed modification of virtually any gene or chromosomal locus for which a cloned sequence is available. The majority of mammalian gene-targeting studies have been directed toward disruption (“knockout”) of a selected target gene locus in mouse embryo stem (ES) cells (4,5), with the primary objective of obtaining the desired mutant mouse as quickly as possible. Relatively few studies have examined targeted recombination in cell types other than mouse ES cells. This chapter describes methods and use of targeted recombination as an approach to study mechanisms of recombination in cultured mammalian cells, and, in particular, the use of gene-targeting approaches to generate and analyze DNA repair-deficient knockout mutants to reveal interactions between DNA repair and recombinational pathways in mammalian cells.


Chinese Hamster Ovary Cell Chinese Hamster Ovary Nucleotide Excision Repair Target Vector Chinese Hamster Ovary Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rothstein, R. (1991) Targeting, disruption, replacement, and allele rescue: Integrative DNA transformation in yeast. Methods Enzymol. 194, 281–301.PubMedCrossRefGoogle Scholar
  2. 2.
    Capecchi, M. R. (1989) Altering the genome by homologous recombination. Science 244, 1288–1292.PubMedCrossRefGoogle Scholar
  3. 3.
    Waldman, A. S. (1992) Targeted homologous recombination in mammalian cells. Crit. Rev. Oncol. Hematol. 12, 49–64.PubMedCrossRefGoogle Scholar
  4. 4.
    Ramirez-Solis, R., Davis, A. C, and Bradley, A. (1993) Gene targeting in embryonic stem cells. Methods Enzymol. 225, 855–879.PubMedCrossRefGoogle Scholar
  5. 5.
    Capecchi, M. R. (1989) The new mouse genetics: altering the genome by gene targeting. Trends Genet. 5, 70–76.PubMedCrossRefGoogle Scholar
  6. 6.
    Schiestl, R. H. and Prakash, S. (1988) RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination. Mol. Cell. Biol. 8, 3619–3626.PubMedGoogle Scholar
  7. 7.
    Schiestl, R. H. and Prakash., S. (1990) RAD10 an excision repair gene of Saccharomyces cerevisiae is involved in the RAD1 pathway of mitotic recombination. Mol. Cell. Biol. 10, 2485–2491.PubMedGoogle Scholar
  8. 8.
    Fishman-Lobell, J. and Haber, J. E. (1992) Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258, 480–484.PubMedCrossRefGoogle Scholar
  9. 9.
    Ivanov, E. L. and Haber, J. E. (1995) RAD1 and RAD10, but not other excision repair genes are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 2245–2251.PubMedGoogle Scholar
  10. 10.
    Nairn, R. S., Humphrey, R. M., and Adair, G. M. (1988) Transformation depending on intermolecular homologous recombination is stimulated by UV damage in transfected DNA. Mutat. Res. 208, 137–141.PubMedCrossRefGoogle Scholar
  11. 11.
    Nairn, R. S., Adair, G. M., Christmann, C. B., and Humphrey, R. M. (1991) UV stimulation of intermolecular homologous recombination in CHO cells. Mol. Carcinog. 4, 519–526.PubMedCrossRefGoogle Scholar
  12. 12.
    Nairn, R. S., Adair, G. M., Porter, T., Pennington, S. L., Smith, D. G. Wilson J. H., and Seidman, M. M. (1993) Targeting vector configuration and method of gene transfer influence targeted correction of the APRT gene in Chinese hamster ovary cells. Somat. Cell Mol. Genet. 19, 363–375.PubMedCrossRefGoogle Scholar
  13. 12a.
    Sargent, R. G., Rolig, R. L., Kilburn, A. E., Adair, G. M., Wilson, J. H., and Naivn, R. S. (1997) Proc. Recombination-dependent deletion formation in mammalian cells deficient in the nucleotide excision repair gene ERCC1. Natl. Acad. Sci. USA 94, 13,122–13,127.CrossRefGoogle Scholar
  14. 13.
    Adair, G. M. and Nairn, R. S. (1995) Gene targeting, in: DNA Repair Mechanisms: Impact on Human Diseases and Cancer (Vos, J.-M., ed.), Biomedical Landes Co., Austin, TX, pp. 301–328.Google Scholar
  15. 14.
    Rolig, R. L., Layher, S. K., Santi, B., Adair, G. M., Gu, F., Rainbow, A. J., et al. (1997) Survival, mutagenesis, and host cell reactivation in a Chinese hamster ovary cell ERCC1 knock-out mutant. Mutagenesis 12, 277–283.PubMedCrossRefGoogle Scholar
  16. 15.
    Gottesman, M. M. (ed.) (1985) Molecular Cell Genetics. John Wiley, New York.Google Scholar
  17. 16.
    O’Neill, J. P., Couch, D. B., Machanoff, R., San Sebastion, J. R., Brimer, P. A., and Hsie, A. W. (1977) A quantitative assay of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase locus in Chinese hamster ovary cells (CHO/HGPRT system): utilization with a variety of mutagenic agents. Mutat. Res. 45, 103–109.Google Scholar
  18. 17.
    Siciliano, M. J., Stallings, R. L., Humphrey, R. M., and Adair, G. M. (1986) Mutation in somatic cells as determined by electrophoretic analysis of mutagen-exposed Chinese hamster ovary cells, in Chemical Mutagens, vol. 10 (de Serres, F. J., ed.), Plenum, New York, pp. 509–531.Google Scholar
  19. 18.
    Thompson, L. H. Bachinski, L. L., Stallings, R. L., Dolf, G., Weber, C. A., Westerfeld, A., and Siciliano, M. J. (1989) Complementation of repair gene mutations on the hemizygous chromosome 9 in CHO: a third repair gene on human chromosome 19. Genomics 5, 670–679.PubMedCrossRefGoogle Scholar
  20. 19.
    te Riele, H., Maandag, E. R., and Berns, A. (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl. Acad. Sci. USA 89, 5128–5132.CrossRefGoogle Scholar
  21. 20.
    Deng, C. and Capecchi, M. R. (1992) Re-examination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell. Biol. 12, 3365–3371.PubMedGoogle Scholar
  22. 21.
    van Duin, M., de Wit, J., Odjik, H., Westerveld, A., Yasui, A., Koken, M. H., et al. (1986) Molecular characterization of the human excision repair gene ERCC1: cDNA cloning and amino acid homology with the yeast DNA repair gene RAD10. Cell 44, 913–923.PubMedCrossRefGoogle Scholar
  23. 21a.
    Adair, G. M., Scheerer, J. B., Brotherman, A., McConville, S., Wilson, J. H., and Naivn, R. S. (1998) Targeted recombination at the Chinese hamster APRT locus using insertion versus replacement vectors. Somat. Cell Mol. Genet. 24, 91–105.PubMedCrossRefGoogle Scholar
  24. 22.
    Adair, G. M., Nairn, R. S., Wilson, J. H., Scheerer, J. B., and Brotherman, K. A. (1990) Targeted gene replacement at the endogenous APRT locus in CHO cells. Somat. Cell Mol. Genet. 16, 437–441.PubMedCrossRefGoogle Scholar
  25. 23.
    Hasty, P., Ramirez-Solis, R., Krumlauf, R., and Bradley, A. (1991) Introduction of a subtle mutation into the Hox-2. 6 locus in embryonic stem cells. Nature 350, 243–246.PubMedCrossRefGoogle Scholar
  26. 24.
    Valancius, V. and Smithies, O. (1991) Testing an “in-out” targeting procedure for making subtle genomic modifications in mouse embryonic stem cells. Mol. Cell. Biol. 11, 1402–1408.PubMedGoogle Scholar
  27. 25.
    Scheerer, J. B. and Adair, G. M. (1994) The homology dependence of targeted recombination at the Chinese hamster APRT locus. Mol. Cell. Biol. 14, 6663–6673.PubMedGoogle Scholar
  28. 26.
    Hasty, P., Rivera-Perez, J., and Bradley, A. (1991) The length of homology required for gene targeting in embryonic stem cells. Mol. Cell. Biol. 11, 5586–5591.PubMedGoogle Scholar
  29. 27.
    Mansour, S. L., Thomas, K. T., and Capecchi, M. R. (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to nonselectable genes. Nature 336, 348–352.PubMedCrossRefGoogle Scholar
  30. 28.
    Adair, G. M., Nairn, R. S., Wilson, J. H., Seidman, M. M., Brotherman, K. A., MacKinnon, C., et al. (1989) Targeted homologous recombination at the endogenous adenine phosphoribosyltransferase locus in Chinese hamster cells. Proc. Natl. Acad. Sci. USA 86, 4574–4578.PubMedCrossRefGoogle Scholar
  31. 29.
    Porter, T., Pennington, S., Adair, G. M., Nairn, R. S., and Wilson, J. H. (1990) A novel selection system for recombinational and mutational events within an intron of a eucaryotic gene. Nucleic Acids Res. 18, 5173–5180.PubMedCrossRefGoogle Scholar
  32. 30.
    Pennington, S. L. and Wilson, J. H. (1991) Gene targeting in Chinese hamster ovary cells is conservative. Proc. Natl. Acad. Sci. USA 88, 9498–9502.PubMedCrossRefGoogle Scholar
  33. 31.
    Aratani, Y., Okazaki, R., and Koyama, H. (1992) End extension repair of introduced targeting vectors mediated by homologous recombination in mammalian cells. Nucleic Acids Res. 20, 4795–4801.PubMedCrossRefGoogle Scholar
  34. 32.
    Fujioka, K-I., Aratani, Y., Kusano, K., and Koyama, H. (1993) Targeted recombination with single-stranded DNA vectors in mammalian cells. Nucleic Acids Res. 21, 407–412.PubMedCrossRefGoogle Scholar
  35. 33.
    Wang, Q. and Taylor, M. W. (1993) Correction of a deletion mutant by gene targeting with an adenovirus vector. Mol. Cell. Biol. 13, 918–927.PubMedGoogle Scholar
  36. 34.
    Waldman, B. C., O’Quinn, J. R., and Waldman, A. S. (1996) Enrichment for gene targeting in mammalian cells by inhibition of poly(ADP-ribosylation). Biochim. Biophys. Acta. 1308, 241–250.PubMedGoogle Scholar
  37. 35.
    Chu, G., Hayakawa, H., and Berg, P. (1987) Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 15, 1311–1326.PubMedCrossRefGoogle Scholar
  38. 36.
    Thomas, K. R. and Capecchi, M. R. (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512.PubMedCrossRefGoogle Scholar
  39. 37.
    Adair, G. M., Stallings, R. L., Nairn, R. S., and Siciliano, M. J. (1983) High-frequency structural gene deletion as the basis for functional hemizygosity of the adenine phosphoribosyltransferase locus in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. U. S. A. 80, 5961–5964.PubMedCrossRefGoogle Scholar
  40. 38.
    Smith, D. G. and Adair, G. M. (1996) Characterization of an apparent hotspot for spontaneous mutation in exon 5 of the Chinese hamster APRT gene. Mutat. Res. 352, 87–96.PubMedGoogle Scholar
  41. 39.
    Sargent, R. G., Merrihew, R. V., Nairn, R. S., Adair, G. M., Meuth, M., and Wilson, J. H. (1996) The influence of a (GT)29 microsatellite sequence on homologous recombination in the hamster APRT gene. Nucleic Acids Res. 24, 746–753.PubMedGoogle Scholar
  42. 40.
    Mulligan, R., and Berg, P. (1981) Expression of a bacterial gene in mammalian cells. Proc. Natl. Acad. Sci. USA 78, 2072–2076.PubMedCrossRefGoogle Scholar
  43. 41.
    Lowy, I., Pellicer, A., Jackson, J., Sim, G., Silverstein, S., and Axel, R. (1980) Isolation of transforming DNA: cloning of the hamster aprt gene. Cell 22, 817–823.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Rodney S. Nairn
    • 1
  • Gerald M. Adair
    • 1
  1. 1.Department of Carcinogenesis, M. D. Anderson Cancer CenterUniversity of TexasSmithville

Personalised recommendations