Skip to main content

Use of Xenopus Oocytes and Early Embryos to Study MAPK Signaling

  • Protocol
MAP Kinase Signaling Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 250))

  • 820 Accesses

Abstract

Xenopus oocyte maturation is a powerful system to study biochemical mechanisms that regulate intracellular signaling and cell-cycle control. Fully grown Xenopus oocytes are arrested at the G2/M boundary of the first meiotic division. The process of maturation can be induced in vitro by incubation of isolated oocytes with hormones, such as the natural inducer progesterone or others such as insulin or insulin growth factor-1. Several hours after hormone treatment, the nucleus (germinal vesicle) migrates to the animal pole of the oocyte, and the nuclear envelope dissolves. This process is known as germinal vesicle breakdown (GVBD) and can be easily scored because it produces the appearance of a white spot on the animal pole of the oocyte by displacement of the pigments. The maturing oocyte progresses through meiosis I and then enters meiosis II, where it remains arrested at the metaphase II, awaiting fertilization. The early signaling pathways activated by progesterone are not well understood (for reviews, see refs. 1 and 2). However, a key enzymatic activity that regulates the G2/M transition is the maturation promoting factor (MPF), which is composed of cyclin B and the serine/threonine protein kinase Cdc2. This complex is maintained in an inactive form (pre-MPF) during the G2 arrest owing to the phosphorylation of Cdc2 by the Myt1 protein kinase. The dephosphorylation necessary to activate pre-MPF and induce progression of the oocyte into meiosis is catalyzed by the phosphatase Cdc25C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferrell, J. E., Jr. (1999) Xenopus oocyte maturation: new lessons from a good egg. Bioessays 21, 833–842.

    Article  PubMed  Google Scholar 

  2. Nebreda, A. R. and Ferby, I. (2000) Regulation of the meiotic cell cycle in oocytes. Curr. Opin. Cell Biol. 12, 666–675.

    Article  PubMed  CAS  Google Scholar 

  3. Bagowski, C. P., Xiong, W., and Ferrell, J. E., Jr. (2001) c-Jun N-terminal kinase activation in Xenopus laevis eggs and embryos: a possible non-genomic role for the JNK signaling pathway. J. Biol. Chem. 276, 1459–1465.

    Article  PubMed  CAS  Google Scholar 

  4. Millar, J. B., Buck, V., and Wilkinson, M. G. (1995) Pyp1 and Pyp2 PTPases dephosphorylate an osmosensing MAP kinase controlling cell size at division in fission yeast. Genes Dev. 9, 2117–2130.

    Article  PubMed  CAS  Google Scholar 

  5. Shiozaki, K. and Russell, P. (1995) Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature 378, 739–743.

    Article  PubMed  CAS  Google Scholar 

  6. Morrison, D. L., Yee, A., Paddon, H. B., Vilimek, D., Aebersold, R., and Pelech, S. L. (2000) Regulation of the meiosis-inhibited protein kinase, a p38(MAPK) isoform, during meiosis and following fertilization of seastar oocytes. J. Biol. Chem. 275, 34,236–34,244.

    Article  PubMed  CAS  Google Scholar 

  7. Bulavin, D. V., Higashimoto, Y., Popoff, I. J., et al. (2001) Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 411, 102–107.

    Article  PubMed  CAS  Google Scholar 

  8. Lacal, J. C. (1998) Oocytes microinjection assay to study the MAP-kinase cascade. Methods Mol. Biol. 84, 139–152.

    PubMed  CAS  Google Scholar 

  9. Sive, H. L., Grainger, R. M., and Harland, R. M. (2000) Early Development of Xenopus laevis: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  10. Wu, M. and Gerhart, J. (1991) Raising Xenopus in the laboratory. Methods Cell Biol. 36, 3–18.

    Article  PubMed  CAS  Google Scholar 

  11. Murray, A. W. (1991) Cell cycle extracts. Methods Cell Biol. 36, 581–605.

    Article  PubMed  CAS  Google Scholar 

  12. Keller, R. (1991) Early embryonic development of Xenopus laevis. Methods Cell Biol. 36, 61–113.

    Article  PubMed  CAS  Google Scholar 

  13. Anderson, C. W., Baum, P. R., and Gesteland, R. F. (1973) Processing of adenovirus 2-induced proteins. J. Virol. 12, 241–252.

    PubMed  CAS  Google Scholar 

  14. Palmer, A., Gavin, A. C., and Nebreda, A. R. (1998) A link between MAP kinase and p34(cdc2)/cyclin B during oocyte maturation: p90(rsk) phosphorylates and inactivates the p34(cdc2) inhibitory kinase Myt1. EMBO J. 17, 5037–5047.

    Article  PubMed  CAS  Google Scholar 

  15. Sagata, N., Oskarsson, M., Copeland, T., Brumbaugh, J., and Vande Woude, G. F. (1988) Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature 335, 519–525.

    Article  PubMed  CAS  Google Scholar 

  16. Kosako, H., Gotoh, Y., Matsuda, S., Ishikawa, M., and Nishida, E. (1992). Xenopus MAP kinase activator is a serine/threonine/tyrosine kinase activated by threonine phosphorylation. EMBO J. 11, 2903–2908.

    PubMed  CAS  Google Scholar 

  17. Nebreda, A. R., Hill, C., Gomez, N., Cohen, P., and Hunt, T. (1993) The protein kinase mos activates MAP kinase kinase in vitro and stimulates the MAP kinase pathway in mammalian somatic cells in vivo. FEBS Lett. 333, 183–187.

    Article  PubMed  CAS  Google Scholar 

  18. Nebreda, A. R. and Hunt, T. (1993) The c-mos proto-oncogene protein kinase turns on and maintains the activity of MAP kinase, but not MPF, in cell-free extracts of Xenopus oocytes and eggs. EMBO J 12, 1979–1986.

    PubMed  CAS  Google Scholar 

  19. Alonso, G., Ambrosino, C., Jones, M., and Nebreda, A. R. (2000) Differential activation of p38 mitogen-activated protein kinase isoforms depending on signal strength. J. Biol. Chem. 275, 40,641–40,648.

    Article  PubMed  CAS  Google Scholar 

  20. Livingstone, C., Patel, G., and Jones, N. (1995) ATF-2 contains a phosphorylation-dependent transcriptional activation domain. EMBO J. 14, 1785–1797.

    PubMed  CAS  Google Scholar 

  21. Haccard, O., Sarcevic, B., Lewellyn, A., et al. (1993) Induction of metaphase arrest in cleaving Xenopus embryos by MAP kinase. Science 262, 1262–1265.

    Article  PubMed  CAS  Google Scholar 

  22. Kosako, H., Gotoh, Y., and Nishida, E. (1994) Mitogen-activated protein kinase kinase is required for the mos-induced metaphase arrest. J. Biol. Chem. 269, 28,354–28,358.

    PubMed  CAS  Google Scholar 

  23. Gross, S. D., Schwab, M. S., Lewellyn, A. L., and Maller, J. L. (1999) Induction of metaphase arrest in cleaving Xenopus embryos by the protein kinase p90Rsk. Science 286, 1365–1367.

    Article  PubMed  CAS  Google Scholar 

  24. Sagata, N. (1996) Meiotic metaphase arrest in animal oocytes: its mechanisms and biological significance. Trends Biol. Cell 6, 22–28.

    Article  CAS  Google Scholar 

  25. Tunquist, B. J. and Maller, J. L. (2003) Under arrest: cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes Dev. 17, 683–710.

    Article  PubMed  CAS  Google Scholar 

  26. Takenaka, K., Moriguchi, T., and Nishida, E. (1998) Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science 280, 599–602.

    Article  PubMed  CAS  Google Scholar 

  27. Howell, M. and Hill, C. S. (1997) XSmad2 directly activates the activin-inducible, dorsal mesoderm gene XFKH1 in Xenopus embryos. EMBO J. 16, 7411–7421.

    Article  PubMed  CAS  Google Scholar 

  28. Rupp, R. A., Snider, L., and Weintraub, H. (1994) Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev. 8, 1311–1323.

    Article  PubMed  CAS  Google Scholar 

  29. Krieg, P. A., and Melton, D. A. (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 12, 7057–7070.

    Article  PubMed  CAS  Google Scholar 

  30. Smith, L. D., Xu, W. L., and Varnold, R. L. (1991) Oogenesis and oocyte isolation. Methods Cell Biol. 36, 45–60.

    Article  PubMed  CAS  Google Scholar 

  31. Gavin, A. C. and Nebreda, A. R. (1999) A MAP kinase docking site is required for phosphorylation and activation of p90(rsk)/MAPKAP kinase-1. Curr. Biol. 9, 281–284.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Perdiguero, E., Nebreda, A.R. (2004). Use of Xenopus Oocytes and Early Embryos to Study MAPK Signaling. In: Seger, R. (eds) MAP Kinase Signaling Protocols. Methods in Molecular Biology™, vol 250. Humana Press. https://doi.org/10.1385/1-59259-671-1:299

Download citation

  • DOI: https://doi.org/10.1385/1-59259-671-1:299

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-998-8

  • Online ISBN: 978-1-59259-671-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics