Skip to main content

Determination of ERK Activity

Antiphospho-ERK Antibodies, In Vitro Phosphorylation, and In-Gel Kinase Assay

  • Protocol
MAP Kinase Signaling Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 250))

  • 855 Accesses

Abstract

The mitogen-activated protein kinases (MAPKs) are a family of protein serine/threonine kinases that operate within specific signaling pathways called MAPK cascades (for reviews see Chapter 1 and references therein). Each MAPK cascade is composed of up to six tiers of protein kinases, which activate each other, and thus participate in the amplification and specificity determination of the transmitted signals. Activation of the protein kinase components of the cascade is carried out by phosphorylation, which for enzymes at a given tier of the cascade occurs at a common phosphorylation site, such as the Thr-Xaa-Tyr motif for MAPKs. Eventually the signals are transmitted to several regulatory proteins that essentially govern all stimulated cellular processes including proliferation, differentiation, and response to stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boulton, T. G., Yancopoulos, G. D., Gregory, J. S., Slaughter, C., Moomaw, C. J. H., and Cobb, M. H. (1990) An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 249, 64–67.

    Article  PubMed  CAS  Google Scholar 

  2. Hibi, M., Lin, A., Smeal, T., Minden, A., and Karin, M. (1993) Identification of an oncoprotein-and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 7, 2135–2148.

    Article  PubMed  CAS  Google Scholar 

  3. Kyriakis, J. M., Banerjee, P., Nikolakaki, E., et al. (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369, 156–160.

    Article  PubMed  CAS  Google Scholar 

  4. Freshney, N. W., Rawlinson, L., Guesdon, F., et al. (1994) Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78, 1039–1049.

    Article  PubMed  CAS  Google Scholar 

  5. Han, J., Lee, J. D., Bibbs, L., and Ulevitch, R. J. (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811.

    Article  PubMed  CAS  Google Scholar 

  6. Rouse, J., Cohen, P., Trigon, S., et al. (1994) A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78, 1027–1037.

    Article  PubMed  CAS  Google Scholar 

  7. Lee, J. D., Ulevitch, R. J., and Han, J. (1995) Primary structure of BMK1: a new mammalian map kinase. Biochem. Biophys. Res. Commun. 213, 715–724.

    Article  PubMed  CAS  Google Scholar 

  8. Zhou, G., Bao, Z. Q., and Dixon, J. E. (1995) Components of a new human protein kinase signal transduction pathway. J. Biol. Chem. 270, 12,665–12,669.

    PubMed  CAS  Google Scholar 

  9. Abe, M. K., Kuo, W. L., Hershenson, M. B., and Rosner, M. R. (1999) Extracellular signal-regulated kinase 7 (ERK7), a novel ERK with a C-terminal domain that regulates its activity, its cellular localization, and cell growth. Mol. Cell. Biol. 19, 1301–1312.

    PubMed  CAS  Google Scholar 

  10. Yung, Y., Yao, Z., Hanoch, T., and Seger, R. (2000) ERK1b: a 46 kD ERK isoform that is differentially regulated by MEK. J. Biol. Chem. 275, 15,799–15,808.

    Article  PubMed  CAS  Google Scholar 

  11. Derijard, B., Raingeaud, J., Barrett, T., et al. (1995) Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms [published erratum appears in Science 1995 Jul 7;269(5220):17]. Scienc 267, 682–685.

    Article  CAS  Google Scholar 

  12. Tournier, C., Whitmarsh, A. J., Cavanagh, J., Barrett, T., and Davis, R. J. (1997) Mitogen-activated protein kinase kinase 7 is an activator of the c-Jun NH2-terminal kinase. Proc. Natl. Acad. Sci. USA 94, 7337–7342.

    Article  PubMed  CAS  Google Scholar 

  13. Kyriakis, J. M. (1999) Making the connection: coupling of stress-activated ERK/MAPK (extracellular-signal-regulated kinase/mitogen-activated protein kinase) core signalling modules to extracellular stimuli and biological responses. Biochem. Soc. Symp. 64, 29–48.

    PubMed  CAS  Google Scholar 

  14. Pawson, T. and Scott, J. D. (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075–2080.

    Article  PubMed  CAS  Google Scholar 

  15. Ahn, N. G. and Krebs, E. G. (1990) Evidence for an epidermal growth factor-stimuated protein kinase cascade in Swiss 3T3 cells. Activation of serine peptide kinase activity by myelin basic protein kinases in vitro. J. Biol. Chem. 265, 11,495–11,501.

    PubMed  CAS  Google Scholar 

  16. Ahn, N. G., Seger, R., Bratlien, R. L., Diltz, C. D., Tonks, N. K., and Krebs, E. G. (1991) Multiple components in an epidermal growth factor-stimulated protein kinase cascade. In vitro activation of myelin basic protein/microtubule-associated protein-2 kinase. J. Biol. Chem. 266, 4220–4227.

    PubMed  CAS  Google Scholar 

  17. Yung, Y., Dolginov, Y., Yao, Z., et al. (1997) Detection of ERK activation by a novel monoclonal antibody. FEBS Lett. 408, 292–296.

    Article  PubMed  CAS  Google Scholar 

  18. Jaaro, H., Rubinfeld, H., Hanoch, T., and Seger, R. (1997) Nuclear translocation of mitogen-activated protein kinase kinase (MEK1) in response to mitogenic stimulation. Proc. Natl. Acad. Sci. USA 94, 3742–3747.

    Article  PubMed  CAS  Google Scholar 

  19. Yao, Z., Dolginov, Y., Hanoch, T., et al. (2000) Detection of partially phosphorylated forms of ERK by monoclonal antibodies reveals spatial regulation of ERK activity by phosphatases. FEBS Lett 468, 37–42.

    Article  PubMed  CAS  Google Scholar 

  20. Force, T., Bonventre, J. V., Heidecker, G., Rapp, U., Avruch, J., and Kyriakis, J. M. (1994) Enzymatic characteristics of the c-Raf-1 protein kinase. Proc. Natl. Acad. Sci. USA 91, 1270–1274.

    Article  PubMed  CAS  Google Scholar 

  21. Zhao, Z., Tan, Z., Diltz, C. D., You, M., and Fischer, E. H. (1996) Activation of mitogen-activated protein (MAP) kinase pathway by pervanadate, a potent inhibitor of tyrosine phosphatases. J. Biol. Chem. 271, 22,251–22,255.

    Article  PubMed  CAS  Google Scholar 

  22. Ahn, N. G., Weiel, J. E., Chan, C. P., and Krebs, E. G. (1990) Identification of multiple epidermal growth factor-stimulated protein serine/threonine kinases from Swiss 3T3 cells. J. Biol. Chem. 265, 11,487–11,494.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Kraus, S., Seger, R. (2004). Determination of ERK Activity. In: Seger, R. (eds) MAP Kinase Signaling Protocols. Methods in Molecular Biology™, vol 250. Humana Press. https://doi.org/10.1385/1-59259-671-1:29

Download citation

  • DOI: https://doi.org/10.1385/1-59259-671-1:29

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-998-8

  • Online ISBN: 978-1-59259-671-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics