Skip to main content

Computer Simulation of MAPK Signal Transduction

  • Protocol
MAP Kinase Signaling Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 250))

  • 801 Accesses

Abstract

We predict that computational modeling platforms will soon become standard tools in experimental laboratories involved in the study of complex regulatory networks of various cellular processes—a field of research where an avalanche of genomic, proteomic and other biochemical data have recently been gleaned, and this trend is expected to continue in the foreseeable future. Quantitative kinetic modeling requires one to postulate detailed molecular pathways and to carry out analyses in the context of an integrated dynamic system so that predictions can be made and compared with experimental data as well as aid in the design of future experiments. The speed of modern computers is such that one can perform simulations of many possible models and discriminate against those that are less probable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, C-Y. F. and Ferrell, J. E., Jr. (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 93, 10,078–10,083.

    Article  PubMed  CAS  Google Scholar 

  2. Gibson, M. A. and Mjolsness, E. (2001) Modeling the activity of single genes, in Computation Modeling of Genetic and Biochemical Networks (Bower, J. M. and Bolouri, H., eds.), MIT Press, Cambridge, MA, pp. 1–48.

    Google Scholar 

  3. Asthagiri, A. R. and Lauffenburger, D. A. (2001) A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (MAPK) pathway model. Biotechnol. Prog. 17, 227–239.

    Article  PubMed  CAS  Google Scholar 

  4. Kholodenko, B. N. (2000) Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem. 267, 1583–1588.

    Article  PubMed  CAS  Google Scholar 

  5. Cheng, J., Yang, J., Xia, Y., Karin, M., and Su, B. (2000) Synergistic interaction of MEK kinase 2, c-Jun N-terminal kinase (JNK) kinase 2, and JNK1 results in efficient and specific JNK1 activation. Mol. Cell. Biol. 20, 2334–2342.

    Article  PubMed  CAS  Google Scholar 

  6. Levchenko, A., Bruck, J., and Sternberg, P. W. (2000) Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl. Acad. Sci. USA 97, 5818–5823.

    Article  PubMed  CAS  Google Scholar 

  7. Shapiro, B. E., Levchenko, A., and Mjolsness, E. (2002) Automatic model generation for signal transduction with applications to MAPK pathway, in Foundations of Systems Biology (Kitano, H., ed.), MIT Press, Cambridge, MA, pp. 145–162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Aguda, B.D., Sauro, H.M. (2004). Computer Simulation of MAPK Signal Transduction. In: Seger, R. (eds) MAP Kinase Signaling Protocols. Methods in Molecular Biology™, vol 250. Humana Press. https://doi.org/10.1385/1-59259-671-1:167

Download citation

  • DOI: https://doi.org/10.1385/1-59259-671-1:167

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-998-8

  • Online ISBN: 978-1-59259-671-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics