Skip to main content

The ERK Cascade As a Prototype of MAPK Signaling Pathways

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 250))

Abstract

Sequential activation of kinases (protein kinase cascades) is a common mechanism of signal transduction in many cellular processes (1). Over the past decade several related intracellular signaling cascades have been elucidated, collectively known as mitogen-activated protein kinase (MAPK) signaling cascades (27). These cascades cooperate in transmitting extracellular signals to their intracellular targets and thus initiate cellular processes such as proliferation, differentiation, development, stress response, and apoptosis. Each of these signaling cascades consists of three to six tiers of protein kinases that sequentially activate each other by phosphorylation. The similarity between the enzymes that comprise each tier in the various cascades makes them a part of a superfamily of protein kinases.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Campbell, J. S., Seger, R., Graves, J. D., Graves, L. M., Jensen, A. M., and Krebs, E. G. (1995) The MAP kinase cascade. Recent Prog. Horm. Res. 50, 131–159.

    PubMed  CAS  Google Scholar 

  2. Seger, R. and Krebs, E. G. (1995) The MAPK signaling cascade. FASEB J. 9, 726–735.

    PubMed  CAS  Google Scholar 

  3. Rubinfeld, H. and Seger, R. (1998) Detection of MAPK cascades. Curr. Protocols Cell Biol. 14.3, 1–19.

    Google Scholar 

  4. Lewis, T. S., Shapiro, P. S., and Ahn, N. G. (1998) Signal transduction through MAP kinase cascades. Adv. Cancer Res. 74, 49–139.

    Article  PubMed  CAS  Google Scholar 

  5. Schaeffer, H. J. and Weber, M. J. (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 19, 2435–2444.

    PubMed  CAS  Google Scholar 

  6. Chang, L. and Karin, M. (2001) Mammalian MAP kinase signalling cascades. Nature 410, 37–40.

    Article  PubMed  CAS  Google Scholar 

  7. Pearson, G., Robinson, F., Beers Gibson, T., et al. (2001) Mitogen-activated protein (map) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153–183.

    Article  PubMed  CAS  Google Scholar 

  8. Canagarajah, B. J., Khokhlatchev, A., Cobb, M. H., and Goldsmith, E. J. (1997) Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859–869.

    Article  PubMed  CAS  Google Scholar 

  9. Payne, D. M., Rossomando, A. J., Martino, P., et al. (1991) Identification of the regulatory phosphorylation sites in pp42/mitogen activated protein kinase (MAP kinase). EMBO J. 10, 885–892.

    PubMed  CAS  Google Scholar 

  10. Boulton, T. G., Nye, S. H., Robbins, D. J., et al. (1991) ERK’s: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663–675.

    Article  PubMed  CAS  Google Scholar 

  11. Derijard, B., Hibi, M., Wu, I. H., et al. (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025–1027.

    Article  PubMed  CAS  Google Scholar 

  12. Kyriakis, J. M., Banerjee, P., Nikolakaki, E., et al. (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369, 156–160.

    Article  PubMed  CAS  Google Scholar 

  13. Freshney, N. W., Rawlinson, L., Guesdon, F., et al. (1994) Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78, 1039–1049.

    Article  PubMed  CAS  Google Scholar 

  14. Han, J., Lee, J. D., Bibbs, L., and Ulevitch, R. J. (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811.

    Article  PubMed  CAS  Google Scholar 

  15. Rouse, J., Cohen, P., Trigon, S., et al. (1994) A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78, 1027–1037.

    Article  PubMed  CAS  Google Scholar 

  16. Zhou, G., Bao, Z. Q., and Dixon, J. E. (1995) Components of a new human protein kinase signal transduction pathway. J. Biol. Chem. 270, 12,665–12,669.

    PubMed  CAS  Google Scholar 

  17. Lee, J. D., Ulevitch, R. J., and Han, J. (1995) Primary structure of BMK1: a new mammalian map kinase. Biochem. Biophys. Res. Commun. 213, 715–724.

    Article  CAS  Google Scholar 

  18. Bacus, S. S., Gudkov, A. V., Lowe, M., et al. (2001) Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 20, 147–155.

    Article  PubMed  CAS  Google Scholar 

  19. Naor, Z., Benard, O., and Seger, R. (2000) Activation of MAPK cascades by G-protein-coupled receptors: the case of gonadotropin-releasing hormone receptor. Trends Endocrinol. Metab. 11, 91–99.

    Article  PubMed  CAS  Google Scholar 

  20. Schlessinger, J. (1993) How receptor tyrosine kinases activate Ras. Trends Biochem. Sci. 18, 273–275.

    Article  PubMed  CAS  Google Scholar 

  21. Rane, S. G. (1999) Ion channels as physiological effectors for growth factor receptor and Ras/ERK signaling pathways. Adv. Second Messenger Phosphoprotein Res. 33, 107–127.

    PubMed  CAS  Google Scholar 

  22. Sternberg, P. W. and Alberola-Ila, J. (1998) Conspiracy theory: RAS and RAF do not act alone. Cell 95, 447–450.

    Article  PubMed  CAS  Google Scholar 

  23. Barkoff, A., Ballantyne, S., and Wickens, M. (1998) Meiotic maturation in Xenopus requires polyadenylation of multiple mRNAs. EMBO J. 17, 3168–3175.

    Article  PubMed  CAS  Google Scholar 

  24. Alessi, D. R., Saito, Y., Campbell, D. G., et al. (1994) Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1. EMBO J. 13, 1610–1619.

    PubMed  CAS  Google Scholar 

  25. Seger, R., Ahn, N. G., Posada, J., et al. (1992) Purification and characterization of MAP kinase activator(s) from epidermal growth factor stimulated A431 cells. J. Biol. Chem. 267, 14,373–14,381.

    PubMed  CAS  Google Scholar 

  26. Sturgill, T. W., Ray, L. B., Erikson, E., and Maller, J. L. (1988) Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 334, 715–718.

    Article  PubMed  CAS  Google Scholar 

  27. Deak, M., Clifton, A. D., Lucocq, L. M., and Alessi, D. R. (1998) Mitogen-and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 17, 4426–4441.

    Article  PubMed  CAS  Google Scholar 

  28. Fukunaga, R. and Hunter, T. (1997) MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 16, 1921–1933.

    Article  PubMed  CAS  Google Scholar 

  29. Waskiewicz, A. J., Flynn, A., Proud, C. G., and Cooper, J. A. (1997) Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 16, 1909–1920.

    Article  PubMed  CAS  Google Scholar 

  30. Eldar-Finkelman, H., Seger, R., Vandenheede, J. R., and Krebs, E. G. (1995) Inactivation of glycogen synthase kinase-3 by epidermal growth factor is mediated by mitogen-activated protein kinase/p90 ribosomal protein S6 kinase signaling pathway in NIH/3T3 cells. J. Biol. Chem. 270, 987–990.

    Article  PubMed  CAS  Google Scholar 

  31. Sapkota, G. P., Kieloch, A., Lizcano, J. M., et al. (2001) Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90RSK and cAMP-dependent protein kinase, but not its farnesylation at Cys433, is essential for LKB1 to suppress cell growth. J. Biol. Chem. 276, 19,469–19,482.

    Article  PubMed  CAS  Google Scholar 

  32. Kyriakis, J. M. (1999) Making the connection: coupling of stress-activated ERK/MAPK (extracellular-signal-regulated kinase/mitogen-activated protein kinase) core signalling modules to extracellular stimuli and biological responses. Biochem. Soc. Symp. 64, 29–48.

    PubMed  CAS  Google Scholar 

  33. Ono, K. and Han, J. (2000) The p38 signal transduction pathway: activation and function. Cell Sig. 12, 1–13.

    Article  CAS  Google Scholar 

  34. Lee, J. C., Laydon, J. T., McDonnell, P. C., et al. (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372, 739–746.

    Article  PubMed  CAS  Google Scholar 

  35. Cuenda, A., Cohen, P., Buee-Scherrer, V., and Goedert, M. (1997) Activation of stress-activated protein kinase-3 (SAPK3) by cytokines and cellular stresses is mediated via SAPKK3 (MKK6): comparison of the specificities of SAPK3 and SAPK2 (RK/p38). EMBO J. 16, 295–305.

    Article  PubMed  CAS  Google Scholar 

  36. Goedert, M., Cuenda, A., Craxton, M., Jakes, R., and Cohen, P. (1997) Activation of the novel stress-activated protein kinase SAPK4 by cytokines and cellular stresses is mediated by SKK3 (MKK6); comparison of its substrate specificity with that of other SAP kinases. EMBO J. 16, 3563–3571.

    Article  PubMed  CAS  Google Scholar 

  37. Stokoe, D., Campbell, D. G., Nakielny, S., et al. (1992) MAPKAP kinase-2: a novel protein kinase activated by mitogen-activated protein kinase. EMBO J. 11, 3985–3994.

    PubMed  CAS  Google Scholar 

  38. McLaughlin, M. M., Kumar, S., McDonnell, P. C., et al. (1996) Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase. J. Biol. Chem. 271, 8488–8492.

    Article  PubMed  CAS  Google Scholar 

  39. New, L., Jiang, Y., Zhao, M., et al. (1998) PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBO J. 17, 3372–3384.

    Article  PubMed  CAS  Google Scholar 

  40. Kramer, R. M., Roberts, E. F., Um, S. L., et al. (1996) p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets: evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2. J. Biol. Chem. 271, 27,723–27,729.

    Article  PubMed  CAS  Google Scholar 

  41. Davis, R. J. (2000) Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252.

    Article  PubMed  CAS  Google Scholar 

  42. Coso, O. A., Chiariello, M., Yu, J. C., et al. (1995) The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81, 1137–1146.

    Article  PubMed  CAS  Google Scholar 

  43. Dan, I., Watanabe, N. M., and Kusumi, A. (2001) The Ste20 group kinases as regulators of MAP kinase cascades. Trends Cell. Biol. 11, 220–230.

    Article  PubMed  CAS  Google Scholar 

  44. Yan, M., Dai, T., Deak, J. C., et al. (1994) Activation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1. Nature 372, 798–800.

    PubMed  CAS  Google Scholar 

  45. Holland, P. M., Suzanne, M., Campbell, J. S., Noselli, S., and Cooper, J. A. (1997) MKK7 is a stress-activated mitogen-activated protein kinase kinase functionally related to hemipterous. J. Biol. Chem. 272, 24,994–24,998.

    Article  PubMed  CAS  Google Scholar 

  46. Tournier, C., Whitmarsh, A. J., Cavanagh, J., Barrett, T., and Davis, R. J. (1997) Mitogen-activated protein kinase kinase 7 is an activator of the c-Jun NH2-terminal kinase. Proc. Natl. Acad. Sci. USA 94, 7337–7342.

    Article  PubMed  CAS  Google Scholar 

  47. Hibi, M., Lin, A., Smeal, T., Minden, A., and Karin, M. (1993) Identification of an oncoprotein-and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 7, 2135–2148.

    Article  PubMed  CAS  Google Scholar 

  48. Deng, X., Xiao, L., Lang, W., et al. (2001) Novel role for JNK as a stress-activated Bcl2 kinase. J. Biol. Chem. 276, 23,681–23,688.

    Article  PubMed  CAS  Google Scholar 

  49. Zhang, Y., Zhong, S., Dong, Z., Chen, N., Bode, A. M., and Ma, W. (2001) UVA induces Ser381 phosphorylation of p90RSK/MAPKAP-K1 via ERK and JNK pathways. J. Biol. Chem. 276, 14,572–14,580.

    Article  PubMed  CAS  Google Scholar 

  50. Chiariello, M., Marinissen, M. J., and Gutkind, J. S. (2000) Multiple mitogen-activated protein kinase signaling pathways connect the cot oncoprotein to the c-jun promoter and to cellular transformation. Mol. Cell. Biol. 20, 1747–1758.

    Article  PubMed  CAS  Google Scholar 

  51. Gotoh, I., Adachi, M., and Nishida, E. (2001) Identification and characterization of a novel map kinase kinase kinase, mltk. J. Biol. Chem. 276, 4276–4286.

    Article  PubMed  CAS  Google Scholar 

  52. Chao, T. H., Hayashi, M., Tapping, R. I., Kato, Y., and Lee, J. D. (1999) MEKK3 directly regulates MEK5 activity as part of the big mitogen-activated protein kinase 1 (BMK1) signaling pathway. J. Biol. Chem. 274, 36,035–36,038.

    Article  PubMed  CAS  Google Scholar 

  53. Chayama, K., Papst, P. J., Garrington, T. P., et al. (2001) Role of MEKK2-MEK5 in the regulation of TNF-alpha gene expression and MEKK2-MKK7 in the activation of c-Jun N-terminal kinase in mast cells. Proc. Natl. Acad. Sci. USA 98, 4599–4604.

    Article  PubMed  CAS  Google Scholar 

  54. Kato, Y., Chao, T. H., Hayashi, M., Tapping, R. I., and Lee, J. D. (2000) Role of BMK1 in regulation of growth factor-induced cellular responses. Immunol. Res. 21, 233–237.

    Article  PubMed  CAS  Google Scholar 

  55. Kasler, H. G., Victoria, J., Duramad, O., and Winoto, A. (2000) ERK5 is a novel type of mitogen-activated protein kinase containing a transcriptional activation domain. Mol. Cell. Biol. 20, 8382–8389.

    Article  PubMed  CAS  Google Scholar 

  56. Hayashi, M., Tapping, R. I., Chao, T. H., et al. (2001) BMK1 mediates growth factor-induced cell proliferation through direct cellular activation of serum and glucocorticoid-inducible kinase. J. Biol. Chem. 276, 8631–8634.

    Article  PubMed  CAS  Google Scholar 

  57. Abe, M. K., Kuo, W. L., Hershenson, M. B., and Rosner, M. R. (1999) Extracellular signal-regulated kinase 7 (ERK7), a novel ERK with a C-terminal domain that regulates its activity, its cellular localization, and cell growth. Mol. Cell. Biol. 19, 1301–1312.

    PubMed  CAS  Google Scholar 

  58. Abe, M. K., Kahle, K. T., Saelzler, M. P., Orth, K., Dixon, J. E., and Rosner, M. R. (2001) ERK7 is an autoactivated member of the MAP kinase family. J. Biol. Chem. 276, 21,272–21,279.

    Article  PubMed  CAS  Google Scholar 

  59. Seger, R., Biener, Y., Feinstein, R., Hanoch, T., Gazit, A., and Zick, Y. (1995) Differential activation of mitogen-activated protein kinase and S6 kinase signaling pathways by 12-O-tetradecanoylphorbol-13-acetate (TPA) and insulin. Evidence for involvement of a TPA-stimulated protein-tyrosine kinase. J. Biol. Chem. 270, 28,325–28,330.

    Article  PubMed  CAS  Google Scholar 

  60. Cowley, S., Paterson, H., Kemp, P., and Marshall, C. J. (1994) Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77, 841–852.

    Article  PubMed  CAS  Google Scholar 

  61. Zheng, C. F. and Guan, K. L. (1994) Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues. EMBO J. 13, 1123–1131.

    PubMed  CAS  Google Scholar 

  62. Seger, R., Seger, D., Reszka, A. A., et al. (1994) Over-expression of mitogen-activated protein kinase kinase (MAPKK) and its mutants in NIH-3T3 cells: evidence that MAPKK’s involvement in cellular proliferation is regulated by phosphorylation of serine residues in its kinase subdomains VII and VIII. J. Biol. Chem. 269, 25,699–25,709.

    PubMed  CAS  Google Scholar 

  63. Seger, R., Ahn, N. G., Boulton, T. G., et al. (1991) Microtubule-associated protein 2 kinases, ERK1 and ERK2, undergo autophosphorylation on both tyrosine and threonine residues: implication for their mechanism of activation. Proc. Natl. Acad. Sci. USA 88, 6142–6146.

    Article  PubMed  CAS  Google Scholar 

  64. Haystead, T. A., Dent, P., Wu, J., Haystead, C. M., and Sturgill, T. W. (1992) Ordered phosphorylation of p42mapk by MAP kinase kinase. FEBS Lett. 306, 17–22.

    Article  PubMed  CAS  Google Scholar 

  65. Zheng, C. F. and Guan, K. L. (1993) Properties of MEKs, the kinases that phosphorylate and activate the extracellular signal-regulated kinases. J. Biol. Chem. 268, 23,933–23,939.

    PubMed  CAS  Google Scholar 

  66. Crews, C. M., Alessandrini, A., and Erikson, R. L. (1992) The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258, 478–480.

    Article  PubMed  CAS  Google Scholar 

  67. Seger, R., Seger, D., Lozeman, F. J., et al. (1992) Human T-cell Map kinase kinases are related to yeast signal transduction kinases. J. Biol. Chem. 267, 25,628–25,631.

    PubMed  CAS  Google Scholar 

  68. Fukuda, M., Gotoh, I., Gotoh, Y., and Nishida, E. (1996) cytoplasmic localization of mitogen-activated protein kinase kinase directed by its NH2-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal. J. Biol. Chem. 271, 20,024–20,028.

    Article  PubMed  CAS  Google Scholar 

  69. Jaaro, H., Rubinfeld, H., Hanoch, T., and Seger, R. (1997) Nuclear translocation of mitogen-activated protein kinase kinase (MEK1) in response to mitogenic stimulation. Proc. Natl. Acad. Sci. USA 94, 3742–3747.

    Article  PubMed  CAS  Google Scholar 

  70. Tanoue, T., Adachi, M., Moriguchi, T., and Nishida, E. (2000) A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat. Cell. Biol. 2, 110–116.

    Article  PubMed  CAS  Google Scholar 

  71. Xu, B., Wilsbacher, J. L., Collisson, T., and Cobb, M. H. (1999) The N-terminal ERK-binding site of MEK1 is required for efficient feedback phosphorylation by ERK2 in vitro and ERK activation in vivo. J. Biol. Chem. 274, 34,029–34,035.

    Article  PubMed  CAS  Google Scholar 

  72. Dang, A., Frost, J. A., and Cobb, M. H. (1998) The MEK1 proline-rich insert is required for efficient activation of the mitogen-activated protein kinases ERK1 and ERK2 in mammalian cells. J. Biol. Chem. 273, 19,909–19,913.

    Article  PubMed  CAS  Google Scholar 

  73. Rossomando, A. J., Dent, P., Sturgill, T. W., and Marshak, D. R. (1994) Mitogen-activated protein kinase kinase 1 (MKK1) is negatively regulated by threonine phosphorylation. Mol. Cell Biol. 14, 1594–1602.

    PubMed  CAS  Google Scholar 

  74. Yung, Y., Yao, Z., Hanoch, T., and Seger, R. (2000) ERK1b: a 46 kD ERK isoform that is differentially regulated by MEK. J. Biol. Chem. 275, 15,799–15,808.

    Article  PubMed  CAS  Google Scholar 

  75. Gonzalez, F. A., Raden, D. L., Rigby, M. R., and Davis, R. J. (1992) Heterogeneous expression of four MAP kinase isoforms in human tissues. FEBS Lett. 304, 170–178.

    Article  PubMed  CAS  Google Scholar 

  76. Fukuda, M., Gotoh, Y., and Nishida, E. (1997) Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J. 16, 1901–1908.

    Article  PubMed  CAS  Google Scholar 

  77. Gonzalez, F. A., Raden, D. L., and Davis, R. J. (1991) Identification of substrate recognition determinants for human ERK1 and ERK2 protein kinases. J. Biol. Chem. 266, 22,159–22,163.

    PubMed  CAS  Google Scholar 

  78. Haycock, J. W., Ahn, N. G., Cobb, M. H., and Krebs, E. G. (1992) ERK1 and ERK2, two microtubule-associated protein 2 kinases, mediate the phosphorylation of tyrosine hydroxylase at serine-31 in situ. Proc. Natl. Acad. Sci. USA 89, 2365–2369.

    Article  PubMed  CAS  Google Scholar 

  79. Lewis, T. S., Hunt, J. B., Aveline, L. D., et al. (2000) Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Mol. Cell 6, 1343–1354.

    Article  PubMed  CAS  Google Scholar 

  80. Zhang, F., Strand, A., Robbins, D., Cobb, M. H., and Goldsmith, J. G. (1994) Atomic structure of the MAP kinase ERK2 at 2.3 Å resolution. Nature 367, 704–711.

    Article  PubMed  CAS  Google Scholar 

  81. Wolf, I., Rubinfeld, H., Yoon, S., Marmor, G., Hanoch, T., and Seger, R. (2001) Involvement of the activation loop of ERK in the detachment from cytosolic anchoring. J. Biol. Chem. 276, 24,490–24,497.

    Article  PubMed  CAS  Google Scholar 

  82. Brunet, A. and Pouyssegur, J. (1996) Identification of MAP kinase domains by redirecting stress signals into growth factor responses. Science 272, 1652–1655.

    Article  PubMed  CAS  Google Scholar 

  83. Wilsbacher, J. L., Goldsmith, E. J., and Cobb, M. H. (1999) Phosphorylation of MAP kinases by MAP/ERK involves multiple regions of MAP kinases. J. Biol. Chem. 274, 16,988–16,994.

    Article  PubMed  CAS  Google Scholar 

  84. Eblen, S. T., Catling, A. D., Assanah, M. C., and Weber, M. J. (2001) Biochemical and biological functions of the N-terminal, noncatalytic domain of extracellular signal-regulated kinase 2. Mol. Cell. Biol. 21, 249–259.

    Article  PubMed  CAS  Google Scholar 

  85. Rubinfeld, H., Hanoch, T., and Seger, R. (1999) Identification of a cytoplasmic-retention sequence in ERK2. J. Biol. Chem. 274, 30,349–30,352.

    Article  PubMed  CAS  Google Scholar 

  86. Bardwell, A. J., Flatauer, L. J., Matsukuma, K., Thorner, J., and Bardwell, L. (2001) A conserved docking site in meks mediates high-affinity binding to map kinases and cooperates with a scaffold protein to enhance signal transmission. J. Biol. Chem. 276, 10,374–10,386.

    Article  PubMed  CAS  Google Scholar 

  87. Schaeffer, H. J., Catling, A. D., Eblen, S. T., Collier, L. S., Krauss, A., and Weber, M. J. (1998) MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science 281, 1668–1671.

    Article  PubMed  CAS  Google Scholar 

  88. Bott, C. M., Thorneycroft, S. G., and Marshall, C. J. (1994) The sevenmaker gain-of-function mutation in p42 MAP kinase leads to enhanced signalling and reduced sensitivity to dual specificity phosphatase action. FEBS Lett. 352, 201–205.

    Article  PubMed  CAS  Google Scholar 

  89. Reszka, A. A., Bulinski, J. C., Krebs, E. G., and Fischer, E. H. (1997) Mitogen-activated protein kinase/extracellular signal-regulated kinase 2 regulates cytoskeletal organization and chemotaxis via catalytic and microtubule-specific interactions. Mol. Biol. Cell. 8, 1219–1232.

    PubMed  CAS  Google Scholar 

  90. Reszka, A. A., Seger, R., Diltz, C. D., Krebs, E. G., and Fischer, E. H. (1995) Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc. Natl. Acad. Sci. USA 92, 8881–8885.

    Article  PubMed  CAS  Google Scholar 

  91. Alessi, D. R., Gomez, N., Moorhead, G., Lewis, T., Keyse, S. M., and Cohen, P. (1995) Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines. Curr. Biol. 5, 283–295.

    Article  PubMed  CAS  Google Scholar 

  92. Keyse, S. M. (1998) Protein phosphatases and the regulation of MAP kinase activity. Semin. Cell Dev. Biol. 9, 143–152.

    Article  PubMed  CAS  Google Scholar 

  93. Chu, Y., Solski, P. A., Khosravi-Far, R., Der, C. J., and Kelly, K. (1996) The mitogen-activated protein kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities and reduced activity in vivo toward the ERK2 sevenmaker mutation. J. Biol. Chem. 271, 6497–6501.

    Article  PubMed  CAS  Google Scholar 

  94. Muda, M., Theodosiou, A., Rodrigues, N., et al. (1996) The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen-activated protein kinases. J. Biol. Chem. 271, 27,205–27,208.

    Article  PubMed  CAS  Google Scholar 

  95. Camps, M., Nichols, A., and Arkinstall, S. (2000) Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J. 14, 6–16.

    PubMed  CAS  Google Scholar 

  96. Pulido, R., Zuniga, A., and Ullrich, A. (1998) PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif. EMBO J. 17, 7337–7350.

    Article  PubMed  CAS  Google Scholar 

  97. Oh-hora, M., Ogata, M., Mori, Y., et al. (1999) Direct suppression of TCR-mediated activation of extracellular signal-regulated kinase by leukocyte protein tyrosine phosphatase, a tyrosine-specific phosphatase. J. Immunol. 163, 1282–1288.

    PubMed  CAS  Google Scholar 

  98. Zuniga, A., Torres, J., Ubeda, J., and Pulido, R. (1999) Interaction of mitogen-activated protein kinases with the kinase interaction motif of the tyrosine phosphatase PTP-SL provides substrate specificity and retains ERK2 in the cytoplasm. J. Biol. Chem. 274, 21,900–21,907.

    Article  PubMed  CAS  Google Scholar 

  99. Karim, F. D. and Rubin, G. M. (1999) PTP-ER, a novel tyrosine phosphatase, functions downstream of Ras1 to downregulate MAP kinase during Drosophila eye development. Mol. Cell. 3, 741–750.

    Article  PubMed  CAS  Google Scholar 

  100. Yao, Z., Dolginov, Y., Hanoch, T., et al. (2000) Detection of partially phosphorylated forms of ERK by monoclonal antibodies reveals spatial regulation of ERK activity by phosphatases. FEBS Lett. 468, 37–42.

    Article  PubMed  CAS  Google Scholar 

  101. Cruzalegui, F. H., Cano, E., and Treisman, R. (1999) ERK activation induces phosphorylation of Elk-1 at multiple S/T-P motifs to high stoichiometry. Oncogene 18, 7948–7957.

    Article  PubMed  CAS  Google Scholar 

  102. Cavigelli, M., Dolfi, F., Claret, F. X., and Karin, M. (1995) Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. EMBO J. 14, 5957–5964.

    PubMed  CAS  Google Scholar 

  103. Treisman, R. (1994) Ternary complex factors: growth factor regulated transcriptional activators. Curr. Opin. Genet. Dev. 4, 96–101.

    Article  PubMed  CAS  Google Scholar 

  104. Gille, H., Sharrocks, A. D., and Shaw, P. E. (1992) Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature 358, 414–417.

    Article  PubMed  CAS  Google Scholar 

  105. Marais, R., Wynne, J., and Treisman, R. (1993) The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73, 381–393.

    Article  PubMed  CAS  Google Scholar 

  106. Whitmarsh, A. J., Shore, P., Sharrocks, A. D., and Davis, R. J. (1995) Integration of MAP kinase signal transduction pathways at the serum response element. Science 269, 403–407.

    Article  PubMed  CAS  Google Scholar 

  107. Wasylyk, B., Hagman, J., and Gutierrez-Hartmann, A. (1998) Ets transcription factors: nuclear effectors of the Ras-MAP-kinase signaling pathway. Trends Biochem. Sci. 23, 213–216.

    Article  PubMed  CAS  Google Scholar 

  108. Lin, L. L., Wartmann, M., Lin, A. Y., Knopf, J. L., Seth, A., and Davis, R. J. (1993) cPLA2 is phosphorylated and activated by MAP kinase. Cell 72, 269–278.

    Article  PubMed  CAS  Google Scholar 

  109. Jovanovic, J. N., Benfenati, F., Siow, Y. L., et al. (1996) Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc. Natl. Acad. Sci. USA 93, 3679–3683.

    Article  PubMed  CAS  Google Scholar 

  110. Peraldi, P., Scimeca, J., Filloux, C., and Van Obberghen, E. (1993) Regulation of extracellular signal regulated protein kinase-1 (ERK1; pp44/mitogen-activated protein kinase) by epidermal groeth factor and nerve growth factor in PC12 cells: implication of ERK1 inhibitory activities. Endocrinology 132, 2578–2585.

    Article  PubMed  CAS  Google Scholar 

  111. Marshall, C. J. (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185.

    Article  PubMed  CAS  Google Scholar 

  112. York, R. D., Yao, H., Dillon, T., et al. (1998) Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392, 622–626.

    Article  PubMed  CAS  Google Scholar 

  113. Grewal, S. S., York, R. D., and Stork, P. J. (1999) Extracellular-signal-regulated kinase signalling in neurons. Curr. Opin. Neurobiol. 9, 544–553.

    Article  PubMed  CAS  Google Scholar 

  114. Hazan-Halevy, I., Seger, R., and Levy, R. (2000) The requirement of both extracellular regulated kinase and p38 mitogen-activated protein kinase for stimulation of cytosolic phospholipase A(2) activity by either FcgammaRIIA or FcgammaRIIIB in human neutrophils: a possible role for pyk2 but not for the grb2-sos-shc complex. J. Biol. Chem. 275, 12,416–12,423.

    Article  PubMed  CAS  Google Scholar 

  115. Elion, E. A. (2000) Pheromone response, mating and cell biology. Curr. Opin. Microbiol. 3, 573–581.

    Article  PubMed  CAS  Google Scholar 

  116. Tournier, C., Whitmarsh, A. J., Cavanagh, J., Barrett, T., and Davis, R. J. (1999) The MKK7 gene encodes a group of c-Jun NH2-terminal kinase kinases. Mol. Cell. Biol. 19, 1569–1581.

    PubMed  CAS  Google Scholar 

  117. Sanz, V., Arozarena, I., and Crespo, P. (2000) Distinct carboxy-termini confer divergent characteristics to the mitogen-activated protein kinase p38alpha and its splice isoform Mxi2. FEBS Lett. 474, 169–174.

    Article  PubMed  CAS  Google Scholar 

  118. Yan, C., Luo, H., Lee, J. D., Abe, J., and Berk, B. C. (2001) Molecular cloning of mouse ERK5/BMK1 splice variants and characterization of ERK5 functional domains. J. Biol. Chem. 276, 10,870–10,878.

    Article  PubMed  CAS  Google Scholar 

  119. Leevers, S. J., Paterson, H. F., and Marshall, C. J. (1994) Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369, 411–414.

    Article  PubMed  CAS  Google Scholar 

  120. Chen, R. H., Sarnecki, C., and Blenis, J. (1992) Nuclear localization and regulation of erk-and rsk-encoded protein kinases. Mol. Cell. Biol. 12, 915–927.

    PubMed  CAS  Google Scholar 

  121. Yung, Y., Dolginov, Y., Yao, Z., et al. (1997) Detection of ERK activation by a novel monoclonal antibody. FEBS Lett. 408, 292–296.

    Article  PubMed  CAS  Google Scholar 

  122. Lenormand, P., Sardet, C., Pages, G., LĽAllemain, G., Brunet, A., and Pouyssegur, J. (1993) Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J. Cell. Biol. 122, 1079–1088.

    Article  PubMed  CAS  Google Scholar 

  123. Adachi, M., Fukuda, M., and Nishida, E. (2000) Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism [published erratum appears in J. Cell. Biol. 2000; 149(3), 754]. J. Cell. Biol. 148, 849–856.

    Article  PubMed  CAS  Google Scholar 

  124. Hunter, T. (1991) Cooperation between oncogenes. Cell 64, 249–270.

    Article  PubMed  CAS  Google Scholar 

  125. Sherr, C. J. (1996) Cancer cell cycle. Science 274, 1672–1677.

    Article  PubMed  CAS  Google Scholar 

  126. Kyriakis, J. M., App, H., Zhang, F. X., et al. (1992) Raf-1 activates MAP kinase-kinase. Nature 358, 417–421.

    Article  PubMed  CAS  Google Scholar 

  127. Sun, H., Charles, C. H., Lau, L. F., and Tonks, N. K. (1993) MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 75, 487–493.

    Article  PubMed  CAS  Google Scholar 

  128. Pages, G., Lenormand, P., LĽAllemain, G., et al. (1993) Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc. Natl. Acad. Sci. USA 90, 8319–8323.

    Article  PubMed  CAS  Google Scholar 

  129. Mansour, S. J., Matten, W. T., Hermann, A. S., et al. (1994) Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265, 966–970.

    Article  PubMed  CAS  Google Scholar 

  130. Hoshino, R., Chatani, Y., Yamori, T., et al. (1999) Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene 18, 813–822.

    Article  PubMed  CAS  Google Scholar 

  131. Sebolt-Leopold, J. S., Dudley, D. T., Herrera, R., et al. (1999) Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat. Med. 5, 810–816.

    Article  PubMed  CAS  Google Scholar 

  132. Lavoie, J. N., LĽAllemain, G., Brunet, A., Muller, R., and Pouyssegur, J. (1996) Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J. Biol. Chem. 271, 20,608–20,616.

    Article  PubMed  CAS  Google Scholar 

  133. Woods, D., Parry, D., Cherwinski, H., Bosch, E., Lees, E., and McMahon, M. (1997) Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol. Cell. Biol. 17, 5598–5611.

    PubMed  CAS  Google Scholar 

  134. Treinies, I., Paterson, H. F., Hooper, S., Wilson, R., and Marshall, C. J. (1999) Activated MEK stimulates expression of AP-1 components independently of phosphatidylinositol 3-kinase (PI3-kinase) but requires a PI3-kinase signal to stimulate DNA synthesis. Mol. Cell. Biol. 19, 321–329.

    PubMed  CAS  Google Scholar 

  135. Kawada, M., Yamagoe, S., Murakami, Y., Suzuki, K., Mizuno, S., and Uehara, Y. (1997) Induction of p27Kip1 degradation and anchorage independence by Ras through the MAP kinase signaling pathway. Oncogene 15, 629–637.

    Article  PubMed  CAS  Google Scholar 

  136. Sewing, A., Wiseman, B., Lloyd, A. C., and Land, H. (1997) High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol. Cell. Biol. 17, 5588–5597.

    PubMed  CAS  Google Scholar 

  137. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., and Lowe, S. W. (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602.

    Article  PubMed  CAS  Google Scholar 

  138. Lloyd, A. C., Obermuller, F., Staddon, S., Barth, C. F., McMahon, M., and Land, H. (1997) Cooperating oncogenes converge to regulate cyclin/cdk complexes. Genes Dev. 11, 663–677.

    Article  PubMed  CAS  Google Scholar 

  139. Sidransky, D. and Hollstein, M. (1996) Clinical implications of the p53 gene. Annu. Rev. Med. 47, 285–301.

    Article  PubMed  CAS  Google Scholar 

  140. Lin, A. W., Barradas, M., Stone, J. C., et al. (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 12, 3008–3019.

    Article  PubMed  CAS  Google Scholar 

  141. Zhu, J., Woods, D., McMahon, M., and Bishop, J. M. (1998) Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12, 2997–3007.

    Article  PubMed  CAS  Google Scholar 

  142. Wright, J. H., Munar, E., Jameson, D. R., et al. (1999) Mitogen-activated protein kinase kinase activity is required for the G(2)/M transition of the cell cycle in mammalian fibroblasts. Proc. Natl. Acad. Sci. USA 96, 11,335–11,340.

    Article  PubMed  CAS  Google Scholar 

  143. Colanzi, A., Deerinck, T. J., Ellisman, M. H., and Malhotra, V. (2000) A specific activation of the mitogen-activated protein kinase kinase 1 (MEK1) is required for Golgi fragmentation during mitosis. J. Cell. Biol. 149, 331–339.

    Article  PubMed  CAS  Google Scholar 

  144. Acharya, U., Mallabiabarrena, A., Acharya, J. K., and Malhotra, V. (1998) Signaling via mitogen-activated protein kinase kinase (MEK1) is required for Golgi fragmentation during mitosis. Cell 92, 183–192.

    Article  PubMed  CAS  Google Scholar 

  145. Kharbanda, S., Saleem, A., Emoto, Y., Stone, R., Rapp, U., and Kufe, D. (1994) Activation of Raf-1 and mitogen-activated protein kinases during monocytic differentiation of human myeloid leukemia cells. J. Biol. Chem. 269, 872–878.

    PubMed  CAS  Google Scholar 

  146. Qiu, M. S. and Green, S. H. (1992) PC12 cell neuronal differentiation is associated with prolonged p21ras activity and consequent prolonged ERK activity. Neuron 9, 705–717.

    Article  CAS  Google Scholar 

  147. Alberola-Ila, J., Forbush, K. A., Seger, R., Krebs, E. G., and Perlmutter, R. M. (1995) Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 373, 620–623.

    Article  PubMed  CAS  Google Scholar 

  148. Tsai, M., Chen, R. H., Tam, S. Y., Blenis, J., and Galli, S. J. (1993) Activation of MAP kinases, pp90rsk and pp70-S6 kinases in mouse mast cells by signaling through the c-kit receptor tyrosine kinase or Fc epsilon RI: rapamycin inhibits activation of pp70-S6 kinase and proliferation in mouse mast cells. Eur. J. Immunol. 23, 3286–3291.

    Article  PubMed  CAS  Google Scholar 

  149. Tsuda, L., Inoue, Y. H., Yoo, M. A., et al. (1993) protein kinase similar to MAP kinase activator acts downstream of the raf kinase in Drosophila. Cell 72, 407–414.

    Article  PubMed  CAS  Google Scholar 

  150. Gabay, L., Seger, R., and Shilo, B. Z. (1997) In situ activation pattern of Drosophila EGF receptor pathway during development. Science 277, 1103–1106.

    Article  PubMed  CAS  Google Scholar 

  151. Haccard, O., Sarcevic, B., Lewellyn, A., et al. (1993) Induction of metaphase arrest in cleaving Xenopus embryos by MAP kinase. Science 262, 1262–1265.

    Article  PubMed  CAS  Google Scholar 

  152. Katsura, I. (1993) In search of new mutants in cell-signaling systems of the nematode Caenorhabditis elegans. Genetica 88, 137–146.

    Article  PubMed  CAS  Google Scholar 

  153. Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J., and Greenberg, M. E. (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326–1331.

    Article  PubMed  CAS  Google Scholar 

  154. von Gise, A., Lorenz, P., Wellbrock, C., et al. (2001) Apoptosis suppression by Raf-1 and MEK1 requires MEK-and phosphatidylinositol 3-kinase-dependent signals. Mol. Cell. Biol. 21, 2324–2336.

    Article  Google Scholar 

  155. Blagosklonny, M. V., Giannakakou, P., el-Deiry, W. S., Kingston, D. G., Higgs, P. I., Neckers, L., and Fojo, T. (1997) Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Res. 57, 130–135.

    PubMed  CAS  Google Scholar 

  156. Blazquez, C., Galve-Roperh, I., and Guzman, M. (2000) De novo-synthesized ceramide signals apoptosis in astrocytes via extracellular signal-regulated kinase. Faseb J. 14, 2315–2322.

    Article  PubMed  CAS  Google Scholar 

  157. Michael, D., Martin, K. C., Seger, R., Ning, M. M., Baston, R., and Kandel, E. R. (1998) Repeated pulses of serotonin required for long-term facilitation activate mitogen-activated protein kinase in sensory neurons of Aplysia. Proc. Natl. Acad. Sci. USA 95, 1864–1869.

    Article  PubMed  CAS  Google Scholar 

  158. Berman, D. E., Hazvi, S., Rosenblum, K., Seger, R., and Dudai, Y. (1998) Specific and differential activation of mitogen-activated protein kinase cascades by unfamiliar taste in the insular cortex of the behaving rat. J. Neurosci. 18, 10,037–10,044.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Rubinfeld, H., Seger, R. (2004). The ERK Cascade As a Prototype of MAPK Signaling Pathways. In: Seger, R. (eds) MAP Kinase Signaling Protocols. Methods in Molecular Biology™, vol 250. Humana Press. https://doi.org/10.1385/1-59259-671-1:1

Download citation

  • DOI: https://doi.org/10.1385/1-59259-671-1:1

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-998-8

  • Online ISBN: 978-1-59259-671-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics