Skip to main content

Antibody Affinity Maturation by Chain Shuffling

  • Protocol
Antibody Engineering

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 248))

Abstract

Phage display can be used to increase the affinity of antibodies more than 1,000-fold (1,2). The starting point is typically a specific antibody isolated from a phage antibody library (see Chapter 8). To accomplish affinity maturation (increased affinity), the sequence of the antibody is diversified, the mutant gene repertoire is displayed on filamentous phage, and higher-affinity binders are selected on antigen. Although the process is straightforward, the investigator should be reasonably certain that increasing the affinity of their particular antibody will lead to the desired biologic effect prior to undertaking in vitro affinity maturation. Higher affinity is especially important when attempting to neutralize a circulating toxin or growth factor in solution. In this case, the antibody distributes in the same compartment as the antigen, allowing the antigen-antibody interaction to proceed to equilibrium. The higher the affinity, the greater the amount of antigen that is bound. In contrast, affinity is only one determining factor in the amount of antibody fragment that will accumulate in a tumor in vivo (3). Factors such as antibody fragment size, pharmacokinetics, and valency may have a more important impact (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, W.-P., Green, K., Pinz-Sweeney, S., Briones, A. T., Burton, D. R., and Barbas, C. F. (1995) CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J. Mol. Biol. 254, 392–403.

    Article  PubMed  CAS  Google Scholar 

  2. Schier, R., McCall, A., Adams, G. P., Marshall, K., Yim, M., Merritt, H., et al. (1996) Isolation of picomolar affinity anti-c-erbB2 single-chain Fv by molecular evolution of the complementarity determining regions in the centre of the antibody combining site. J. Mol. Biol. 263, 551–567.

    Article  PubMed  CAS  Google Scholar 

  3. Adams, G. P., Schier, R., Marshall, K., Wolf, E. J., McCall, A. M., Marks, J. D., et al. (1998) Influence of affinity on the in vitro and in vivo binding properties of human single chain Fv molecules directed against c-erbB-2. Cancer Res. 58, 485–490.

    PubMed  CAS  Google Scholar 

  4. Adams, G. P., Schier, R., McCall, A. M., Crawford, R. S., Wolf, E. J., Weiner, L. M., et al. (1998) Prolonged in vivo tumor retention of a human diabody targeting the extracellular domain of human HER2/neu. Br. J. Cancer 77, 1405–1412.

    Article  PubMed  CAS  Google Scholar 

  5. Marks, J. D., Griffiths, A. D., Malmqvist, M., Clackson, T., Bye, J. M., and Winter, G. (1992) Bypassing immunisation: high affinity human antibodies by chain shuffling. Bio/Technology 10, 779–783.

    Article  PubMed  CAS  Google Scholar 

  6. Clackson, T., Hoogenboom, H. R., Griffiths, A. D., and Winter, G. (1991) Making antibody fragments using phage display libraries. Nature 352, 624–628.

    Article  PubMed  CAS  Google Scholar 

  7. Holliger, P., Prospero, T., and Winter, G. (1993) ‘Diabodies’: small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA 90, 6444–6448.

    Article  PubMed  CAS  Google Scholar 

  8. Schier, R., Bye, J. M., Apell, G., McCall, A., Adams, G. P., Malmqvist, M., et al. (1996) Isolation of high affinity monomeric human anti-c-erbB-2 single chain Fv using affinity driven selection. J. Mol. Biol. 255, 28–43.

    Article  PubMed  CAS  Google Scholar 

  9. Tomlinson, I. M., Walter, G., Marks, J. D., Llewelyn, M. B., and Winter, G. (1992) The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. J. Mol. Biol. 227, 776–798.

    Article  PubMed  CAS  Google Scholar 

  10. Hoogenboom, H. R. and Winter, G. (1992) Bypassing immunisation: human antibodies from synthetic repertoires of germ line VH-gene segments rearranged in-vitro. J. Mol. Biol. 227, 381–388.

    Article  PubMed  CAS  Google Scholar 

  11. Schier, R. S. and Marks, J. D. (1996) Efficient in vitro selection of phage antibodies using BIAcore guided selections. Human antibodies and hybridomas. 7(3), 97–105.

    PubMed  CAS  Google Scholar 

  12. Boder, E. T. and Wittrup, K. D. (1998) Optimal screening of surface-displayed polypeptide libraries. Biotechnol. Prog. 14, 55–62.

    Article  PubMed  CAS  Google Scholar 

  13. Hawkins, R. E., Russell, S. J., and Winter, G. (1992) Selection of phage antibodies by binding afinity: mimicking affinity maturation. J. Mol. Biol. 226, 889–896.

    Article  PubMed  CAS  Google Scholar 

  14. Kabat, E. A., Wu, T. T., Perry, H. M., Gottesman, K. S., and Foeller, C. (1991) Sequences of proteins of immunological interest. US Department of Health and Human Services, US Government Printing Office.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Marks, J.D. (2004). Antibody Affinity Maturation by Chain Shuffling. In: Lo, B.K.C. (eds) Antibody Engineering. Methods in Molecular Biology™, vol 248. Humana Press. https://doi.org/10.1385/1-59259-666-5:327

Download citation

  • DOI: https://doi.org/10.1385/1-59259-666-5:327

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-092-2

  • Online ISBN: 978-1-59259-666-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics