Skip to main content

Antibody Production in Transgenic Plants

  • Protocol
  • 2556 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 248))

Abstract

Antibodies bind with great affinity and specificity to their target antigens, allowing them to be exploited in research, medicine, agriculture, and industry (13). It is estimated that more than 1,000 antibody-based pharmaceuticals are currently in development, and about 200 of these are already undergoing clinical evaluation in humans. Such widespread use of antibodies would benefit from a safe, convenient, and cost-effective system for large-scale production.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chadd, H. E. and Chamow, S. M. (2001) Therapeutic antibody expression technology. Curr. Opin. Biotechnol. 12, 188–194.

    Article  PubMed  CAS  Google Scholar 

  2. Schillberg, S., Zimmermann, S., Zhang, M.-Y., and Fischer, R. (2001) Antibody-based resistance to plant pathogens. Transgenic Res. 10, 1–12.

    Article  PubMed  CAS  Google Scholar 

  3. Gavilondo, J. V. and Larrick, J. W. (2000) Antibody production technology in the millennium. Biotechniques 29, 128–145.

    PubMed  CAS  Google Scholar 

  4. Köhler, G. and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497.

    Article  PubMed  Google Scholar 

  5. Kipriyanov, S. M. and Little, M. (1999) Generation of recombinant antibodies. Mol. Biotechnol. 12, 173–201.

    Article  PubMed  CAS  Google Scholar 

  6. Green, L. (1999) Antibody engineering via genetic engineering of the mouse: xenomouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J. Immunol. Methods 231, 11–23.

    Article  PubMed  CAS  Google Scholar 

  7. Griffiths, A. and Duncan, A. (1998) Strategies for selection of antibodies by phage display. Curr. Opin. Biotechnol. 9, 102–108.

    Article  PubMed  CAS  Google Scholar 

  8. Sidhu, S. S. (2000) Phage display in pharmaceutical biotechnology. Curr. Opin. Biotechnol. 11, 610–616.

    Article  PubMed  CAS  Google Scholar 

  9. Chu, L. and Robinson, D. K. (2001) Industrial choices for protein production by large-scale cell culture. Curr. Opin. Biotechnol. 12, 180–187.

    Article  PubMed  CAS  Google Scholar 

  10. Raju, T. S., Briggs, J., Borge, S. M., and Jones, A. J. S. (2000) Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiolgy 10, 477–486.

    Article  CAS  Google Scholar 

  11. Houdebaine, L. M. (2000) Transgenic animal bioreactors. Transgenic Res. 9, 305–320.

    Article  Google Scholar 

  12. Sánchez, L., Ayala, M., Freyre, F., Pedroso, I., Bell, H., Falcón, V., et al. (1999) High cytoplasmic expression in E. coli, purification and in vitro refolding of a single chain Fv antibody fragment against the hepatitis B surface antigen. J. Biotechnol. 72, 13–20.

    Article  PubMed  Google Scholar 

  13. Giddings, G. (2001) Transgenic plants as protein factories. Curr. Opin. Biotechnol. 12, 450–454.

    Article  PubMed  CAS  Google Scholar 

  14. Stoger, E., Sack, M., Fischer, R., and Christou, P. (2002) Plantibodies: applications, advantages and bottlenecks. Curr. Opin. Biotechnol. 13, 161–166.

    Article  PubMed  CAS  Google Scholar 

  15. Daniell, H., Streatfield, S. J., and Wycoff, K. (2001) Medical molecular farming: production of antibodies, biopharmaceutical and edible vaccines in plants. Trends Plant Sci. 6, 219–226.

    Article  PubMed  CAS  Google Scholar 

  16. Cabanes-Macheteau, M., Fitchette-Laine, A. C., Loutelier-Bourhis, C., Lange, C., Vine, N., Ma, J., et al. (1999) N-Glycosylation of a mouse IgG expressed in transgenic tobacco plants. Glycobiology 9, 365–372.

    Article  PubMed  CAS  Google Scholar 

  17. Chargelegue, D., Vine, N., van Dolleweerd, C., Drake, P. M., and Ma, J. (2000) A murine monoclonal antibody produced in transgenic plants with plant-specific glycans is not immunogenic in mice. Transgenic Res. 9, 187–194.

    Article  PubMed  CAS  Google Scholar 

  18. Bakker, H., Bardor, M., Molthoff, J. W., Gomord, V., Elbers, I., Stevens, L. H., et al. (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc. Natl. Acad. Sci. USA 98, 2899–2904.

    Article  PubMed  CAS  Google Scholar 

  19. Kusnadi, A. R., Nikolov, Z. L., and Howard, J. A. (1997) Production of recombinant proteins in transgenic plants: practical considerations. Biotechnol. Bioeng. 56, 473–484.

    Article  PubMed  CAS  Google Scholar 

  20. Stoger, E., Sack, M., Perrin, Y., Vaquero, C., Torres, E., Twyman, R. M., et al. (2002) Practical considerations for pharmaceutical antibody production in different crop systems. Mol. Breeding 9, 149–158.

    Article  CAS  Google Scholar 

  21. Schillberg, S., Fischer, R., and Emans, N. (2003) Molecular farming of recombinant antibodies in plants. Cell. Mol. Life Sci. 60, 433–445.

    Article  PubMed  CAS  Google Scholar 

  22. Evangelista, R. L., Kusnadi, A. R., Howard, J. A., and Nikolov, Z. L. (1998) Process and economic evaluation of the extraction and purification of recombinant β-glucuronidase from transgenic corn. Biotechnol. Prog. 14, 607–614.

    Article  PubMed  CAS  Google Scholar 

  23. Fulton, S. P. (1994) Large-scale processing of macromolecules. Curr. Opin. Biotechnol. 5, 201–205.

    Article  PubMed  CAS  Google Scholar 

  24. Ford, C. F., Suominen, I., and Glatz, C. E. (1991) Fusion tails for the recovery and purification of recombinant proteins. Protein Expr. Purif. 2, 95–107.

    Article  PubMed  CAS  Google Scholar 

  25. Nygren, P. A., Stahl, S., and Uhlen, M. (1994) Engineering proteins to facilitate bioprocessing. Trends Biotechnol. 12, 184–188.

    Article  PubMed  CAS  Google Scholar 

  26. Christou, P., Ford, T., and Kofron, M. (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically-important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technol. 9, 957–962.

    Article  Google Scholar 

  27. Altpeter, F., Vasil, V., Srivastava, V., Stoger, E., and Vasil, I. K. (1996) Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep. 16, 12–17.

    Article  CAS  Google Scholar 

  28. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.

    Article  CAS  Google Scholar 

  29. Potrykus, I., Harms, C. T., and Lorz, H. (1979) Callus formation from cell culture protoplasts of corn (Zea mays L.). Theor. Appl. Genet. 54, 209–214.

    Article  Google Scholar 

  30. Horsch, R. B., Fry, J. E., Hoffman, N. L., Eicholtz, D., Rogers, S. G., and Fraley, R. T. (1985) A simple and general method for transferring genes into plants. Science 227, 1229–1231.

    Article  CAS  Google Scholar 

  31. Voss, A., Niersbach, M., Hain, R., Hirsch, H. J., Liao, Y. C., Kreuzaler, F., et al. (1995) Reduced virus infectivity in N. tabacum secreting a TMV-specific full-size antibody. Mol. Breed. 1, 39–50.

    Article  CAS  Google Scholar 

  32. Sudhakar, D., Duc, L. T., Bong, B. B., Tinjuangjun, P., Maqbool, S. B., Valdez, M., et al. (1998) An efficient rice transformation system utilizing mature seed-derived explants and a portable, inexpensive particle bombardment device Transgenic Res. 7, 289–294.

    Article  CAS  Google Scholar 

  33. Valdez, M., Cabera-Ponce, J. L., Sudhakar, D., Herrera-Estrella, L., and Christou, P. (1998) Transgenic Central American, West African and Asian elite rice varieties resulting from particle bombardment of foreign DNA into mature seed-derived explants utilizing three different bombardment devices. Ann. Bot. 82, 795–801.

    Article  Google Scholar 

  34. Fischer, R. and Emans, N. (2000) Molecular farming of pharmaceutical proteins. Transgenic Res. 9, 279–299.

    Article  PubMed  CAS  Google Scholar 

  35. Schillberg, S., Emans, N., and Fischer, R. (2002) Antibody molecular farming in plants and plant cells. Phytochem. Rev. 1, 45–54.

    Article  CAS  Google Scholar 

  36. Fu, X., Duc, L. T., Fontana, S., Bong, B. B., Tinjuangjun, P., Sudhakar, D., et al. (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res. 9, 11–19.

    Article  PubMed  CAS  Google Scholar 

  37. Christou, P. and Swain, W. F. (1990) Cotransformation frequencies of foreign genes in soybean cell cultures. Theor. Appl. Genet. 90, 97–104.

    Google Scholar 

  38. Twyman, R. M. and Christou, P. Plant transformation technology—particle bombardment, in Handbook of Plant Biotechnology (Christou, P., ed.), John Wiley & Sons, NY (in press).

    Google Scholar 

  39. Twyman, R. M., Stoger, E., Kohli, A., and Christou, P. (2002) Foreign DNA: integration and expression in transgenic plants, in Genetic Engineering: Principles and Practice, Volume 24 (Setlow, J. K., ed.), Plenum Press, NY.

    Google Scholar 

  40. Vain, P., McMullen, M. D., and Finer, J. J. (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep. 12, 84–88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Stoger, E., Schillberg, S., Twyman, R.M., Fischer, R., Christou, P. (2004). Antibody Production in Transgenic Plants. In: Lo, B.K.C. (eds) Antibody Engineering. Methods in Molecular Biology™, vol 248. Humana Press. https://doi.org/10.1385/1-59259-666-5:301

Download citation

  • DOI: https://doi.org/10.1385/1-59259-666-5:301

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-092-2

  • Online ISBN: 978-1-59259-666-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics