Antibody Variable Regions

Toward a Unified Modeling Method
  • Nicholas Whitelegg
  • Anthony R. Rees
Part of the Methods in Molecular Biology™ book series (MIMB, volume 248)


Predicting the structure of the antibody variable region from sequence has been the focus of considerable research since the work of Kabat and Wu (1), Padlan et al. (2), Stanford and Wu (3), and Feldmann et al. (4). Following the essentially “homology”-based predictions of these early approaches, methods were developed that introduced more rule-based procedures exemplified by our own work (5, 6, 7, 8, 9, 10, 11) and that of Chothia, Lesk, and colleagues (12, 13, 14, 15, 16, 17) who, building on the observations of Kabat et al. (18,19) and Padlan and Davies (20), developed the concept of canonical classes for certain of the variable region complementarity-determining region (CDRs). Since then, attention has focused on the more difficult problem of non-canonical CDRs, of which the antibody heavy-chain CDR3 (hereafter referred to as H3) is the most unique.


Protein Data Bank Residue Type Hairpin Loop Lambda Light Chain Canonical Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kabat, E. A. and Wu, T. T. (1972) Construction of a three-dimensional model of the polypeptide backbone of the variable region of kappa immunoglobulin light chains. Proc. Natl. Acad. Sci. USA 69, 960–964.PubMedCrossRefGoogle Scholar
  2. 2.
    Padlan, E. A., Davies, D. R., Pecht, I., Givol, D., and Wright, C. (1976) Model-building studies of antigen binding sites: the hapten-binding site of MOPC-315. Cold Spring Harbor Symp. Quant. Biol. 41, 627–637.Google Scholar
  3. 3.
    Stanford, J. M. and Wu, T. T. (1981) A predictive method for determining possible three-dimensional foldings of immunoglobulin backbones around antibody combining sites. J. Theor. Biol. 88, 421–439.PubMedCrossRefGoogle Scholar
  4. 4.
    Feldmann, R. J., Potter, M., and Glaudemans, C.P.J. (1981) A hypothetical spacefilling model of the variable regions of the galactan binding myeloma immunoglobulin J539. Mol. Immunol. 18, 683–698.PubMedCrossRefGoogle Scholar
  5. 5.
    Darsley, M. J. and Rees, A. R. (1985) Three distinct epitopes within the loop region of hen egg lysozyme defined with monoclonal antibodies. EMBO J. 4, 383–392.PubMedGoogle Scholar
  6. 6.
    de la Paz, P., Sutton, B. J., Darsley, M. J., and Rees, A. R. (1986) Modelling of the combining sites of three anti-lysozyme monoclonal antibodies and of the complex between one of the antibodies and its epitope. EMBO J. 5, 415–425.PubMedGoogle Scholar
  7. 7.
    Martin, A.C.R., Cheetham, J. C., and Rees, A. R. (1989) Modelling antibody hyper-variable loops: a combined algorithm. Proc. Natl. Acad. Sci. USA 86, 9268–9272.PubMedCrossRefGoogle Scholar
  8. 8.
    Martin, A.C.R., Cheetham, J. C., and Rees, A. R. (1991) Molecular modelling of antibody combining sites. Methods Enzymol. 203, 121–153.PubMedCrossRefGoogle Scholar
  9. 9.
    Pedersen, J. T., Searle, S.M.J., Henry, A. H., and Rees, A. R. (1992) Antibody modelling: Beyond homology. Immunomethods 1, 126–136.CrossRefGoogle Scholar
  10. 10.
    Rees, A. R., Martin, A.C.R., Webster, D., Cheetham, J. C., and Roberts, S. (1990) Antibody combining sites: prediction and design. Biophys. J. 57, A384.Google Scholar
  11. 11.
    Rees, A. R., Searle, S.M.J., Henry, A. H., Pedersen, J. T., and Whitelegg, N.R.J. (1996) Antibody combining sites: structure and prediction. In Sternberg M.J.E. (ed.), Protein Structure Prediction (1st ed.), Oxford University Press, 141–172.Google Scholar
  12. 12.
    Chothia, C. and Lesk, A. M. (1987) Canonical structures for the hypervariable loops of immunoglobulins. J. Mol. Biol. 196, 901–917.PubMedCrossRefGoogle Scholar
  13. 13.
    Chothia, C., Lesk, A. M., Tramontano, A., Levitt, M., Smith-Gill, S. J., Air, G., et al. (1989) Conformations of immunoglobulin hypervariable regions. Nature 342, 877–883.PubMedCrossRefGoogle Scholar
  14. 14.
    Chothia, C., Lesk, A. M., Gherardi, E., Tomlinson, I. M., Walter, G., Marks, J. D., et al. (1992) Structural repertoire of the human Vh segments. J. Mol. Biol. 227, 799–817.PubMedCrossRefGoogle Scholar
  15. 15.
    Tramontano, A., Chothia, C., and Lesk, A. M. (1990) Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the Vh domains of immunoglobulins. J. Mol. Biol. 215, 175–182.PubMedCrossRefGoogle Scholar
  16. 16.
    Tomlinson, I. M., Cox, J.P.L., Gherardi, E., Lesk, A. M., and Chothia, C. (1995) The structural repertoire of the human V-kappa domain. EMBO J. 14, 4628–4638.PubMedGoogle Scholar
  17. 17.
    Al-Lazikani, B., Lesk, A. M., and Chothia, C. (1997) Standard conformations for the canonical structures of immunoglobulins. J. Mol. Biol. 273, 927–948.PubMedCrossRefGoogle Scholar
  18. 18.
    Wu, T. T. and Kabat, E. A. (1970) An analysis of the sequences of the variable regions of Bence-Jones proteins and myeloma light chains and their implications for antibody complementarity. J. Exp. Med. 132, 211–250.PubMedCrossRefGoogle Scholar
  19. 19.
    Kabat, E. A., Wu, T. T., and Bilofsky, H. (1977) Unusual distributions of amino acids in complementarity determining (hypervariable) segments of heavy and light chains of immunoglobulins and their possible roles in specifity of antibody combining sites. J. Biol. Chem. 252, 6609–6616.PubMedGoogle Scholar
  20. 20.
    Padlan, E. A. and Davies, D. R. (1975) Variability of three-dimensional structure in immunoglobulins. Proc. Natl. Acad. Sci. USA 72, 819–823.PubMedCrossRefGoogle Scholar
  21. 21.
    Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000) The Protein Data Bank. Nucleic Acids Res. 28, 235–242.PubMedCrossRefGoogle Scholar
  22. 22.
    Mandal, C., Kingery, B. D., Anchin, J. M., Subramaniam, S., and Linthicum, D. S. (1996) ABGEN: a knowledge based automated approach for antibody structure modelling. Nat. Biotechnol. 14, 323–328.PubMedCrossRefGoogle Scholar
  23. 23.
    Bruccoleri, R. E. and Karplus, M. (1987) Prediction of the folding of short polypeptide segments by uniform conformational sampling. Biopolymers 26, 137–168.PubMedCrossRefGoogle Scholar
  24. 24.
    Reichmann, L., Clark, M., Waldmann, H., and Winter, G. (1988) Reshaping human antibodies for therapy. Nature 332, 323–327.CrossRefGoogle Scholar
  25. 25.
    Roguska, M. A., Pedersen, J. T., Henry, A. H., Searle, S.M.J., Roja, C. M., Avery, B., et al. (1996) A comparison of two murine monoclonal antibodies humanised by CDR-grafting and variable domain resurfacing. Protein Eng. 9, 895–904.PubMedCrossRefGoogle Scholar
  26. 26.
    Dauber-Osguthorpe, P., Roberts, V. A., Osguthorpe, D. J., Wolff, J., Genest, M., and Hagler, A. T. (1988) Structure and energetics of ligand-binding to proteins: Eschericia coli dihydrofolate reductase/trimethoprim, a drug-receptor system. Proteins 4, 31–47.PubMedCrossRefGoogle Scholar
  27. 27.
    Miller, R. J., Jones, D. J., and Thornton, J. M. (1996) Protein fold recognition by sequence threading: tools and assessment techniques. FASEB J. 10, 171–178.PubMedGoogle Scholar
  28. 28.
    Shirai, H., Kidera, A., and Nakamura, H. (1996) Structural classification of CDR-H3 in antibodies. FEBS Lett. 399, 1–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Morea, V., Tramontano, A., Rustici, M., Chothia, C., and Lesk, A. M. (1998) Conformation of the third hypervariable region in the Vh domain of antibodies. J. Mol. Biol. 275, 269–294.PubMedCrossRefGoogle Scholar
  30. 30.
    Sibanda, B. L., Blundell, T. L., and Thornton, J. M. (1988) Conformation of beta-hairpins in protein structures: a systematic classification with applications to modelling by homology, electron-density fitting and protein engineering. J. Mol. Biol. 206, 759–777.CrossRefGoogle Scholar
  31. 31.
    Shirai, H., Kidera, A., and Nakamura, H. (1999) H3-rules: identification of CDR-H3 structures in antibodies. FEBS Lett. 455, 188–197.PubMedCrossRefGoogle Scholar
  32. 32.
    Oliva, B., Bates, P. A., Querlo, E., Aviles, F.X., and Sternberg, M.J.E. (1998) Automated classification of antibody complementarity determining region 3 of the heavy chain (H3) loops into canonical forms and its application to protein structure prediction. J. Mol. Biol. 279, 1193–1210.PubMedCrossRefGoogle Scholar
  33. 33.
    Whitelegg, N. R. J. and Rees, A. R. (2000) WAM—an improved algorithm for modelling antibodies on the Web. Protein Eng. 13, 819–824.PubMedCrossRefGoogle Scholar
  34. 34.
    Kim, S. T., Shirai, H., Nakajima, N., Higo, J., and Nakamura, H. (1999) Enhanced conformational diversity search of CDR-H3 in antibodies: role of the first CDR-H3 residue. Proteins 37, 683–696.PubMedCrossRefGoogle Scholar
  35. 35.
    Whitelegg, N.R.J. (1998) PhD Thesis, “Molecular Modelling of Antibody Combining Sites”, University of Bath, UK.Google Scholar
  36. 36.
    Kraulis, P. J. (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950.CrossRefGoogle Scholar
  37. 37.
    Merritt, E. A. and Bacon, D. J. (1997) Raster3D—Photorealistic molecular graphics. Methods Enzymol. 277, 505–524.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Nicholas Whitelegg
    • 1
  • Anthony R. Rees
    • 1
    • 2
  1. 1.Centre for Protein Analysis and DesignUniversity of BathSwindonUK
  2. 2.Syntem, Parc Scientifique Georges BesseNimesFrance

Personalised recommendations