Affinity Measurement Using Surface Plasmon Resonance

  • Robert Karlsson
  • Anita Larsson
Part of the Methods in Molecular Biology™ book series (MIMB, volume 248)


The change in free energy for a reaction, ΔG, can be determined from the dissociation affinity constant, K D , since ΔG is equal to RTlnK D . The affinity constant provides no information on the rate of the reaction or the energy required to reach the transition state of the reaction (Fig. 1).
Fig. 1.

Energy vs reaction coordinates. A=analyte, L=ligand.


Surface Plasmon Resonance Analyte Concentration Sensor Surface Resonance Unit Surface Plasmon Resonance Biosensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Phizicky, E. M. and Fields, S. (1995) Protein-protein interactions: methods for detection and analysis. Microbiol Rev. 59(1), 94–123. (Review.)PubMedGoogle Scholar
  2. 2.
    van Regenmortel, M. H. and Azimzadeh, A. (2000) Determination of antibody affinity. J. Immunoass. 21(2–3), 211–234. (Review.)CrossRefGoogle Scholar
  3. 3.
    Liedberg, B., Nylander, C., and Lundstrom, I. (1995) Biosensing with surface plasmon resonance—how it all started. Biosens. Bioelectron. 10(8), i–ix.PubMedCrossRefGoogle Scholar
  4. 4.
    Stenberg, E., Persson, P., Roos, H., and Urbaniczky, C. (1991) Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J. Colloid Interface Sci. 143, 513–526.CrossRefGoogle Scholar
  5. 5.
    Roos, H., Karlsson, R., Nilshans, H., and Persson, A. (1998) Thermodynamic analysis of protein interactions with biosensor technology. J. Mol. Recognit. 11(1–6), 204–210.PubMedCrossRefGoogle Scholar
  6. 6.
    Lipschultz, C. A., Yee, A., Mohan, S., Li, Y., and Smith-Gill, S. J. (2002) Temperature differentially affects encounter and docking thermodynamics of antibody—antigen association. J. Mol. Recognit. 15(1), 44–52.PubMedCrossRefGoogle Scholar
  7. 7.
    McDonnell, J. M. (2001) Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr. Opin. Chem. Biol. 5(5), 572–577. (Review.)PubMedCrossRefGoogle Scholar
  8. 8.
    Goel, A., Colcher, D., Koo, J. S., Booth, B. J., Pavlinkova, G., and Batra, S. K. (2000) Relative position of the hexahistidine tag effects binding properties of a tumor-associated single-chain Fv construct. Biochim. Biophys. Acta. 1523(1), 13–20.PubMedGoogle Scholar
  9. 9.
    Nakayashiki, N., Yoshikawa, K., Nakamura, K., Hanai, N., Okamoto, K., Okamoto, S., et al. (2000) Production of a single-chain variable fragment antibody recognizing type III mutant epidermal growth factor receptor. Jpn. J. Cancer Res. 91(10), 1035–1043.PubMedGoogle Scholar
  10. 10.
    Nielsen, U. B., Adams, G. P., Weiner, L. M., and Marks, J. D. (2000) Targeting of bivalent anti-ErbB2 diabody antibody fragments to tumor cells is independent of the intrinsic antibody affinity. Cancer Res. 60(22), 6434–6440.PubMedGoogle Scholar
  11. 11.
    Coeffier, E., Clement, J. M., Cussac, V., Khodaei-Boorane, N., Jehanno, M., Rojas, M., et al. (2000) Antigenicity and immunogenicity of the HIV-1 gp41 epitope ELD-KWA inserted into permissive sites of the MalE protein. Vaccine 19(7–8), 684–693.PubMedCrossRefGoogle Scholar
  12. 12.
    Goel, A., Colcher, D., Baranowska-Kortylewicz, J., Augustine, S., Booth, B. J., Pavlinkova, G., et al. (2000) Genetically engineered tetravalent single-chain Fv of the pancarcinoma monoclonal antibody CC49: improved biodistribution and potential for therapeutic application. Cancer Res 60(24), 696,469–696,471Google Scholar
  13. 13.
    Shaw, D. M., Embleton, M. J., Westwater, C., Ryan, M. G., Myers, K. A., Kings-man, S. M., et al. (2000) Isolation of a high affinity scFv from a monoclonal antibody recognising the oncofoetal antigen 5T4. Biochim. Biophys. Acta. 1524(2–3), 238–246.PubMedGoogle Scholar
  14. 14.
    Willuda, J., Kubetzko, S., Waibel, R., Schubiger, P. A., Zangemeister-Wittke, U., and Pluckthun, A. (2001) Tumor targeting of mono-, di-, and tetravalent anti-p185(HER-2) miniantibodies multimerized by self-associating peptides. J. Biol. Chem. 276(17), 14,385–14,392.Google Scholar
  15. 15.
    Roovers, R. C., van der Linden, E., de Bruine, A. P., Arends, J. W., and Hoogen-boom, H. R. (2001) In vitro characterisation of a monovalent and bivalent form of a fully human anti Ep-CAM phage antibody. Cancer Immunol. Immunother. 50(1), 51–59.PubMedCrossRefGoogle Scholar
  16. 16.
    Bijnens, A. P., Ngo, T. H., Gils, A., Dewaele, J., Knockaert, I., Stassen, J. M., et al. (2001) Elucidation of the binding regions of PAI-1 neutralizing antibodies using chimeric variants of human and rat PAI-1. Thromb. Haemostasis 85(5), 866–874.Google Scholar
  17. 17.
    Houimel, M., Corthesy-Theulaz, I., Fisch, I., Wong, C., Corthesy, B., Mach, J., et al. (2001) Selection of human single chain Fv antibody fragments binding and inhibiting Helicobacter pylori urease. Tumour Biol. 22(1), 36–44.PubMedCrossRefGoogle Scholar
  18. 18.
    Power, B. E., Caine, J. M., Burns, J. E., Shapira, D. R, Hattarki, M. K., Tahtis, K., et al. (2001) Construction, expression and characterisation of a single-chain diabody derived from a humanised anti-Lewis Y cancer targeting antibody using a heat-inducible bacterial secretion vector. Cancer Immunol. Immunother. 50(5), 241–250.PubMedCrossRefGoogle Scholar
  19. 19.
    Cupit, P. M., Lorenzen, N., Strachan, G., Kemp, G. J, Secombes, C. J., and Cunningham, C. (2001) Neutralisation and binding of VHS virus by monovalent antibody fragments. Virus Res. 81(1–2), 47–56.PubMedCrossRefGoogle Scholar
  20. 20.
    Horn, I. R., Wittinghofer, A., de Bruine, A. P., and Hoogenboom, H. R. (1999) Selection of phage-displayed fab antibodies on the active conformation of ras yields a high affinity conformation-specific antibody preventing the binding of c-Raf kinase to Ras. FEBS Lett. 463(1–2), 115–120.PubMedCrossRefGoogle Scholar
  21. 21.
    Hanes, J., Schaffitzel, C., Knappik, A., and Pluckthun, A. (2000) Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat. Biotechnol. 18(12), 1287–1292.PubMedCrossRefGoogle Scholar
  22. 22.
    Su, J. L., McKee, D. D., Ellis, B., Kadwell, S. H., Wisely, G. B., Moore, L. B., et al. (2000) Production and characterization of an estrogen receptor beta subtype-specific mouse monoclonal antibody. Hybridoma 19(6), 481–487PubMedCrossRefGoogle Scholar
  23. 23.
    Houimel, M., Schneider, P., Terskikh, A., and Mach, J. P. (2001) Selection of peptides and synthesis of pentameric peptabody molecules reacting specifically with ErbB-2 receptor. Int. J. Cancer 92(5), 748–755.PubMedCrossRefGoogle Scholar
  24. 24.
    van Remoortere, A., van Dam, G. J., Hokke, C. H., van den Eijnden, D. H., van Die, I., and Deelder, A. M. (2001) Profiles of immunoglobulin M (IgM) and IgG antibodies against defined carbohydrate epitopes in sera of Schistosoma-infected individuals determined by surface plasmon resonance. Infect. Immun. 69(4), 2396–2401.PubMedCrossRefGoogle Scholar
  25. 25.
    Raum, T., Gruber, R., Riethmuller, G., and Kufer, P. (2001) Anti-self antibodies selected from a human IgD heavy chain repertoire: a novel approach to generate therapeutic human antibodies against tumor-associated differentiation antigens. Cancer Immunol. Immunother. 50(3), 141–150.PubMedCrossRefGoogle Scholar
  26. 26.
    Rozemuller, H., Chowdhury, P. S., Pastan, I., and Kreitman, R. J. (2001) Isolation of new anti-CD30 scFvs from DNA-immunized mice by phage display and biologic activity of recombinant immunotoxins produced by fusion with truncated pseudomonas exotoxin. Int. J. Cancer 92(6), 861–870.PubMedCrossRefGoogle Scholar
  27. 27.
    Tanha, J., Xu, P., Chen, Z., Ni, F., Kaplan, H., Narang, S. A., et al. (2001) Optimal design features of camelized human single-domain antibody libraries. J. Biol. Chem. 276(27), 24,774–24,780.PubMedCrossRefGoogle Scholar
  28. 28.
    Novick, D., Nabioullin, R. R., Ragsdale, W., McKenna, S., Weiser, W., Garone, L., et al. (2000) The neutralization of type I IFN biologic actions by anti-IFNAR-2 monoclonal antibodies is not entirely due to inhibition of Jak-Stat tyrosine phosphorylation. J. Interferon Cytokine Res. 20(11), 971–982.PubMedCrossRefGoogle Scholar
  29. 29.
    Uthaipibull, C., Aufiero, B., Syed, S. E., Hansen, B., Guevara Patino, J. A., Angov, E., et al. (2001) Inhibitory and blocking monoclonal antibody epitopes on merozoite surface protein 1 of the malaria parasite Plasmodium falciparum. J. Mol. Biol. 307(5), 1381–1394.PubMedCrossRefGoogle Scholar
  30. 30.
    Nagumo, Y., Oguri, H., Shindo, Y., Sasaki, S., Oishi, T., Hirama, M., et al. (2001) Concise synthesis of ciguatoxin ABC-ring fragments and surface plasmon resonance study of the interaction of their BSA conjugates with monoclonal antibodies. Bioorg. Med. Chem. Lett. 11(15), 2037–2040.PubMedCrossRefGoogle Scholar
  31. 31.
    Thomas, R., Patenaude, S. I., MacKenzie, C. R., To, R., Hirama, T., Young, N. M., et al. (2002) Structure of an anti-blood group A Fv and improvement of its binding affinity without loss of specificity. J. Biol. Chem. 277(3), 2059–2064.PubMedCrossRefGoogle Scholar
  32. 32.
    Karlsson, R. (1999) Affinity analysis of non-steady-state data obtained under mass transport limited conditions using BIAcore technology. J. Mol. Recognit. 12(5), 285–292.PubMedCrossRefGoogle Scholar
  33. 33.
    Baird, C. L. and Myszka, D. G. (2001) Current and emerging commercial optical biosensors. J. Mol. Recognit. 14(5), 261–268. Review.PubMedCrossRefGoogle Scholar
  34. 34.
    Johnsson, B., Lofas, S., and Lindquist, G. (1991) Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal. Biochem. 198(2), 268–277.PubMedCrossRefGoogle Scholar
  35. 35.
    Löfås, S., Johnsson, B., Tegendal, K., and Rönnberg, I. (1993) Dextran modified gold surfaces for surface plasmon resonance sensors: immunoreactivity of immobilized antibodies and antibody-surface interaction studies. Colloids and Surfaces B: Biointerfaces 1, 83–89.CrossRefGoogle Scholar
  36. 36.
    Johnsson, B., Lofas, S., Lindquist, G., Edstrom, A., Muller Hillgren, R.-M., and Hansson, A. (1995) Comparison of methods for immobilization to carboxymethyl dextran sensor surfaces by analysis of the specific activity of monoclonal antibodies. J. Mol. Recognit. 8(1–2), 125–131.Google Scholar
  37. 37.
    Löfås, S., Johnsson, B., Edström, Å., Hansson, A., Lindquist, G., Müller Hillgren, R.-M., et al. (1995), Methods for site controlled coupling to carboxymethyldextran surfaces in surface plasmon resonance sensors. Biosens. Bioelectron. 10, 813–822.CrossRefGoogle Scholar
  38. 38.
    Glaser, R. W. (1993) Antigen-antibody binding and mass transport by convection and diffusion to a surface: a two-dimensional computer model of binding and dissociation kinetics. Anal. Biochem. 213(1), 152–161.PubMedCrossRefGoogle Scholar
  39. 39.
    Karlsson, R., Roos, H., Fägerstam, L., and Persson, B. (1994) Kinetic and concentration analysis using BIA technology. Methods: A companion to methods in enzymology 6, 99–110.CrossRefGoogle Scholar
  40. 40.
    Schuck, P. (1996) Kinetics of ligand binding to receptor immobilized in a polymer matrix, as detected with an evanescent wave biosensor. I. A computer simulation of the influence of mass transport. Biophys. J. 70(3), 1230–1249.PubMedCrossRefGoogle Scholar
  41. 41.
    Myszka, D. G., Morton, T. A., Doyle, M. L., and Chaiken, I. M. (1997) Kinetic analysis of a protein antigen-antibody interaction limited by mass transport on an optical biosensor. Biophys. Chem. 64(1–3), 127–137.PubMedCrossRefGoogle Scholar
  42. 42.
    Karlsson, R. and Falt, A. (1997) Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J. Immunol. Methods 200(1–2), 121–133.PubMedCrossRefGoogle Scholar
  43. 43.
    Wofsy, C., and Goldstein, B. (2002) Effective rate models for receptors distributed in a layer above a surface: application to cells and biacore. Biophys. J. 82(4), 1743–1755.PubMedCrossRefGoogle Scholar
  44. 44.
    Morton, T. A. and Myszka, D. G. (1998) Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Methods Enzymol. 295, 268–294.PubMedCrossRefGoogle Scholar
  45. 45.
    Morton, T. A., Myszka, D. G., and Chaiken, I. M. (1995) Interpreting complex binding kinetics from optical biosensors: a comparison of analysis by linearization, the integrated rate equation, and numerical integration. Anal. Biochem. 227(1), 176–185.PubMedCrossRefGoogle Scholar
  46. 46.
    Roden, L. D. and Myszka, D. G. (1996) Global analysis of a macromolecular interaction measured on BIAcore. Biochem. Biophys. Res. Commun. 225(3), 1073–1077.PubMedCrossRefGoogle Scholar
  47. 47.
    Gunneriusson, E., Nord, K., Uhlén, M., and Nygren, P.-A. (1999) Affinity maturation of a Taq DNA polymerase specific affibody by helix shuffling. Protein Eng. 12 no. 10, 873–878.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Robert Karlsson
    • 1
  • Anita Larsson
    • 1
  1. 1.Biacore ABUppsalaSweden

Personalised recommendations