Skip to main content

Immunocytological Analysis of Oogenesis

  • Protocol
Drosophila Cytogenetics Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 247))

Abstract

Drosophila oogenesis is a fascinating phenomenon. The coordinated action of many cellular processes produces a fully mature egg containing a maternal dowry that both directs and supports development of the embryo. The ovary is one of the best studied organs of Drosophila, and much of our knowledge of oogenesis is contained in several monographs (14) and recent reviews (58). This chapter describes some of the most important cellular processes of oogenesis, and provides detailed methods for their identification and immunocytological analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. King, R.C. (1970) Ovarian Development in Drosophila melanogaster. Academic, New York.

    Google Scholar 

  2. Mahowald, A.P. and Kambysellis, M.P. (1980) Oogenesis, in The Genetics and Biology of Drosophila (Ashburner, M. and Wright, T.R.F., eds.), Academic, New York, Vol. 2d, pp. 141–225.

    Google Scholar 

  3. Spradling, A. (1993) Developmental genetics of oogenesis, in The Development of Drosophila melanogaster (Bate, M. and Martinez-Arias, A., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, Vol. 1, pp. 1–70.

    Google Scholar 

  4. Matova, N. and Cooley, L. (2001) Comparative aspects of animal oogenesis. Dev. Biol. 231, 291–320.

    Article  PubMed  CAS  Google Scholar 

  5. de Cuevas, M., Lilly, M. A., and Spradling, A. C. (1997) Germline cyst formation in Drosophila. Annu.Rev. Genet. 31, 405–428.

    Article  PubMed  Google Scholar 

  6. Navarro, C., Lehmann, R., and Morris, J. (2001) Setting one sister above the rest. Curr. Biol. 11, R162–R165.

    Article  PubMed  CAS  Google Scholar 

  7. Riechmann, V. and Ephrussi, A. (2001) Axis formation during Drosophila oogenesis. Curr. Opin. Gen. Dev. 11, 374–383.

    Article  CAS  Google Scholar 

  8. Endow, S. A. and Komma, D. J. (1997) Spindle dynamics during meiosis in Drosophila oocytes. J. Cell Biol. 137, 1321–1336.

    Article  PubMed  CAS  Google Scholar 

  9. Illmensee, K. and Mahowald, A.P. (1974) Transplantation of posterior polar plasm in Drosophila: induction of germ cells at the anterior pole of the egg. Proc. Natl. Acad. Sci. USA 71, 1016–1020.

    Article  PubMed  CAS  Google Scholar 

  10. Howard, K., Jaglarz, M., Zhang, N., Shah, J., and Warrior, R. (1993) Migration of Drosophila germ cells: analysis using enhancer trap lines. Development (Suppl.) 213–218.

    Google Scholar 

  11. Warrior, R. (1994) Primordial germ cell migration and the assembly of Drosophila embryonic gonad. Dev. Biol. 166, 180–194.

    Article  PubMed  CAS  Google Scholar 

  12. Babcock, B. M. (1971) Oviduct development in Drosophila. II. Metamorphic events in normal and ovariectomized females. Wilhelm Roux. Arch. 167, 24–63.

    Article  Google Scholar 

  13. van Eeden, F. and St. Johnston, D. (1999) The polarisation of the anterior-posterior and dorsal-ventral axes during Drosophila oogenesis. Curr. Opin. Genet. Dev. 9, 396–404.

    Article  PubMed  Google Scholar 

  14. Robinson, D. N., Cant, K., and Cooley, L. (1994) Morphogenesis of the Drosophila ovarian ring canals. Development 120, 2015–2025.

    PubMed  CAS  Google Scholar 

  15. King, R. C. (1957) Oogenesis in adult Drosophila melanogaster. II. Stage distribution as a function of age. Growth 21, 95–102.

    PubMed  CAS  Google Scholar 

  16. Cummings, M. R. and King, R. C. (1969) The cytology of the vitellogenic stages of oogenesis in Drosophila melanogaster I. General staging characteristics. J. Morphol. 128, 427–442.

    Article  Google Scholar 

  17. Gelti-Douka, H., Gingeras, T. R., and Kambysellis, M. P. (1974) Yolk proteins in Drosophila: identification and site of synthesis. J. Exp. Zool. 187, 167–172.

    Article  PubMed  CAS  Google Scholar 

  18. DiMario, P. J. and Mahowald, A. P. (1986) The effects of pH and weak bases on the in vitro endocytosis of vitellogenin by oocytes of Drosophila melanogaster. Cell Tissue Res. 246, 103–108.

    Article  PubMed  CAS  Google Scholar 

  19. Brennan, M.D., Weiner, A. J., Goralski, T. J., and Mahowald, A. P. (1982) The follicle cells are a major site of vitellogenin synthesis in Drosophila melanogaster. Dev. Biol. 89, 225–236.

    Article  PubMed  CAS  Google Scholar 

  20. Margaritis, L., Kafatos, F., and Petri, W. (1980) The eggshell of Drosophila melanogaster: I. Fine structure of the layers and regions of the wild-type egg-shell. J. Cell Sci. 43, 1–35.

    PubMed  CAS  Google Scholar 

  21. Dobens, L. L. and Raftery, L. A. (2000) Integration of epithelial patterning and morphogenesis in Drosophila ovarian follicle cells. Dev. Dynam. 218, 80–93.

    Article  CAS  Google Scholar 

  22. Chao, S. and Nagoshi, R. (1999) Induction of apoptosis in the germline and follicle cell layers of Drosophila egg chambers. Mech. Dev. 88, 159–172.

    Article  PubMed  CAS  Google Scholar 

  23. Bownes, M. and Blair, M. (1986) The effects of a sugar diet and hormones on the expression of the Drosophila yolk-protein genes. J. Insect Physiol. 32, 493–501.

    Article  CAS  Google Scholar 

  24. Chen, P. S., Stumm-Zollinger, E., Aigaki, T., Balmer, J., Bienz, M., and Bohlen, P. (1988) A male accessory gland peptide that regulates reproductive behaviour of female D. melanogaster. Cell 54, 291–298.

    Article  PubMed  CAS  Google Scholar 

  25. Soller, M., Bownes, M., and Kubli, E. (1997) Mating and sex peptide stimulate the accumulation of yolk in oocytes of Drosophila melanogaster. Eur. Biochem, J. 243, 732–738.

    Article  CAS  Google Scholar 

  26. Riddiford, L. M. and Ashburner, M. (1991) Effects of juvenile hormones mimics on larval development and metamorphosis of Drosophila melanogaster. Gen. Comp. Endocrinol. 82, 172–183.

    Article  PubMed  CAS  Google Scholar 

  27. Soller, M., Bownes, M., and Kubli, E. (1999) Control of oocyte maturation in sexually mature Drosophila females. Dev. Biol. 208, 337–351.

    Article  PubMed  CAS  Google Scholar 

  28. Buszczak, M. B. M., Freeman, M. R., Carlson, J. R., Bender, M., Cooley, L., and Segraves, W. A. (1999) Ecdysone response genes govern egg chamber development during mid-oogenesis in Drosophila. Development 126, 4581–4589.

    PubMed  CAS  Google Scholar 

  29. Carney, G. E. and Bender, M. (2000) The Drosophila ecdysone receptor (EcR) gene is required maternally for normal oogenesis. Genetics 154, 1203–1211.

    PubMed  CAS  Google Scholar 

  30. Böhni, R., Riesgo-Escovar, J., Oldham, S., et al. (1999) Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS114. Cell 97, 865–875.

    Article  PubMed  Google Scholar 

  31. Drummond-Barbosa, D. and Spradling, A. C. (2001) Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev. Biol. 231, 265–278.

    Article  PubMed  CAS  Google Scholar 

  32. Wieschaus, E. and Szabad, J. (1979) The development and function of the female germ line in Drosophila melanogaster: a cell lineage study. Dev. Biol. 68, 29–46.

    Article  PubMed  CAS  Google Scholar 

  33. Lin, H. and Spradling, A. C. (1993) Germline stem-cell division and egg chamber development in transplanted Drosophila germaria. Dev. Biol. 159, 140–152.

    Article  PubMed  CAS  Google Scholar 

  34. Lin, H. and Spradling, A. C. (1997) A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124, 2463–2476.

    PubMed  CAS  Google Scholar 

  35. Deng, W. and Lin, H. (1997) Spectrosomes and fusomes anchor mitotic spindles during asymmetric germ cell divisions and facilitate the formation of a polarized microtubule array for oocyte specification in Drosophila. Dev. Biol. 189, 79–94.

    Article  PubMed  CAS  Google Scholar 

  36. de Cuevas, M. and Spradling, A. C. (1998) Morphogenesis of the Drosophila fusome and its implications for the oocyte specification. Development 125, 2781–2789.

    PubMed  Google Scholar 

  37. Storto, P. D. and King, R. C. (1989) The role of polyfusomes in generating branched chains of cystocytes during Drosophila oogenesis. Dev. Genet. 10, 70–86.

    Article  PubMed  CAS  Google Scholar 

  38. McGrail, M., Gepner, J., Silvanovich, A., Ludmann, S., Serr, M., and Hays, T. S. (1995) Regulation of cytoplasmic dynein function in vivo by the Drosophila Glued Complex. J. Cell Biol. 131, 411–425.

    Article  PubMed  CAS  Google Scholar 

  39. McGrail, M. and Hays, T. S. (1997) The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila. Development 124, 2409–2419.

    PubMed  CAS  Google Scholar 

  40. Cha, B.-J., Koppetsch, B. S., and Theurkauf, W. E. (2001) In vivo analysis of Drosophila bicoid mRNA localization reveals a novel microtubule-dependent axis specification pathway. Cell 106, 35–46.

    Article  PubMed  CAS  Google Scholar 

  41. Theurkauf, W. E., Alberts, M., Jan, Y. N., and Jongens, T. A. (1993) A central role for microtubules in the differentiation of Drosophila oocytes. Development 118, 1169–1180.

    PubMed  CAS  Google Scholar 

  42. Grieder, N. C., de Cuevas, M., and Spradling, A. C. (2000) The fusome organizes the microtubule network during oocyte differentiation in Drosophila. Development 127, 4253–4264.

    PubMed  CAS  Google Scholar 

  43. Bolivar, J., Huynh, J. R., Lopez-Schier, H., Gonzales, C., St. Johnston, D., and Gonzales-Reyes, A. (2001) Centrosome migration into the Drosophila oocyte is dependent of BicD, egl and the organisation of the microtubule cytoskeleton. Development 128, 1889–1909.

    PubMed  CAS  Google Scholar 

  44. Carpenter, A. T. C. (1994) Egalitarian and the choice of the cell fates in Drosophila melanogaster oogenesis. Ciba Found. Symp. 182, 223–246.

    PubMed  CAS  Google Scholar 

  45. Huynh, J. R. and St. Johnston, D. (2000) The role of BicD, egl, orb and the microtubules in the restriction of meiosis to the Drosophila oocyte. Development 127, 2785–2794.

    PubMed  CAS  Google Scholar 

  46. Ghabrial, A. and Schüpbach, T. (1999) Activation of a meiotic checkpoint regulates translation of Gurken during Drosophila oogenesis. Nature Cell Biol. 1, 354–357.

    Article  PubMed  CAS  Google Scholar 

  47. Cox, D. N., Lu, B., Sun, T. S., Williams, L. T., and Jan, Y. N. (2001) Drosophila par-1 is required for oocyte differentiation and microtubule organization. Curr. Biol. 11, 75–87.

    Article  PubMed  CAS  Google Scholar 

  48. Huynh, J. R., Shulman, J., Benton, R., and St. Johnston, D. (2001) PAR-1 is required for the maintenance of oocyte fate in Drosophila. Development 128, 1201–1209.

    PubMed  CAS  Google Scholar 

  49. Pare, C. and Suter, B. (2000) Subcellular localization of Bic-D: GFP is linked to an asymmetric oocyte nucleus. J. Cell Sci. 113, 2119–2127.

    PubMed  CAS  Google Scholar 

  50. Clegg, N. J., Findley, S. D., Mahowald, A. P., and Ruohola-Baker, H. (2001) Maelstrom is required to position the MTOC in stage 2–6 Drosophila oocytes. Dev. Genes Evol. 211, 44–48.

    Article  PubMed  CAS  Google Scholar 

  51. Huynh, J. R., Petronczki, M., Knoblich, J., and St. Johnston, D. (2001) Bazooka and PAR-6 are required with PAR-1 for the maintenance of oocyte fate in Drosophila. Curr. Biol. 11, 901–906.

    Article  PubMed  CAS  Google Scholar 

  52. Margolis, J. and Spradling, A. C. (1995) Identification and behaviour of epithelial stem cells in Drosophila ovary. Development 121, 3797–3807.

    PubMed  CAS  Google Scholar 

  53. Forbes, A., Lin, H., Ingham, P., and Spradling, A. C. (1996) Hedgehog is required for the proliferation and specification of ovarian somatic cells prior to egg chamber formation in Drosophila. Development 122, 1125–1135.

    PubMed  CAS  Google Scholar 

  54. Gonzales-Reyes, A. and St. Johnstone, D. (1998) The Drosophila AP axis is polarized by the cadherin-mediated positioning of the oocyte. Development 125, 3635–3644.

    Google Scholar 

  55. Tanentzapf, G., Smith, C., McGlade, J., and Tepass, U. (2000) Apical, lateral, and basal polarization cues contribute to the development of the follicular epithelium during Drosophila oogenesis. J. Cell Biol. 151, 891–904.

    Article  PubMed  CAS  Google Scholar 

  56. Godt, D. and Tepass, U. (1998) Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature 395, 387–391.

    Article  PubMed  CAS  Google Scholar 

  57. Gonzales-Reyes, A. and St. Johnstone, D. (1998) Patterning of the follicle cell epithelium along the anterior-posterior axis during Drosophila development. Development 125, 2837–2846.

    Google Scholar 

  58. Gonzales-Reyes, A., Elliott, H., and St. Johnstone, D. (1995) Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 375, 654–658.

    Article  Google Scholar 

  59. Roth, S., Neuman-Silberberg, F. S., Barcelo, G., and Schüpbach, T. (1995) cornichon and the EGF receptor signalling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell 81, 967–978.

    Article  PubMed  CAS  Google Scholar 

  60. Nilson, L. A. and Schüpbach, T. (1999) EGF receptor signalling in Drosophila oogenesis. Curr. Topics Dev. Biol. 44, 203–243.

    Article  CAS  Google Scholar 

  61. van Buskirk, C. and Schüpbach, T. (1999) Versatility in signalling: multiple responses to EGF receptor activation during Drosophila oogenesis. Trends Cell Biol. 9, 1–4.

    Article  PubMed  Google Scholar 

  62. Stevens, L. (1998) Twin peaks: Spitz and Argos star in patterning of the Drosophila egg. Cell 95, 291–294.

    Article  PubMed  CAS  Google Scholar 

  63. Edwards, K., Demsky, M., Montague, R., Weymouth, N., and Kiehart, D. (1997) GFP-moesin illuminates actin cytoskeleton dynamics in living tissue and demonstrates cell shape changes during morphogenesis in Drosophila. Dev. Biol. 191, 103–117.

    Article  PubMed  CAS  Google Scholar 

  64. Li, K. and Kaufman, T.C. (1996) The homeotic target gene centrosomin encodes an essential centrosomal component. Cell 85, 585–596.

    Article  PubMed  CAS  Google Scholar 

  65. Swan, A., Nguyen, T., and Suter, B. (1999) Drosophila Lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning. Nature Cell Biol. 1, 444–449.

    Article  PubMed  CAS  Google Scholar 

  66. Shulman, J. M., Benton, R., and St. Johnston, D. (2000) The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell 101, 377–388.

    Article  PubMed  CAS  Google Scholar 

  67. Jankovics, F., Sinka, R., and Erdélyi, M. (2001) An interaction type of genetic screen reveals a role of the Rab11 gene in oskar mRNA localization in the developing Drosophila melanogaster oocyte. Genetics 158, 1177–1188.

    PubMed  CAS  Google Scholar 

  68. Baum, B., Li, W., and Perrimon, N. (2000) A cyclase-associated protein regulates actin and cell polarity during Drosophila oogenesis and in yeast. Curr. Biol. 10, 964–973.

    Article  PubMed  CAS  Google Scholar 

  69. Pokrywka, N. J. and Stephenson, E. C. (1995) Microtubules are a general component of mRNA localization systems in Drosophila oocytes. Dev. Biol. 167, 363–370.

    Article  PubMed  CAS  Google Scholar 

  70. Clark, I., Jan, L. Y., and Jan, Y. N. (1997) Reciprocal localization of Nod and kinesin fusion proteins indicates microtubule polarity in Drosophila oocyte, epithelium, neuron and muscle. Development 124, 461–470.

    PubMed  CAS  Google Scholar 

  71. Lasko, P. (1999) RNA sorting in Drosophila oocytes and embryos. FASEB J. 13, 421–433.

    PubMed  CAS  Google Scholar 

  72. Hays, T. and Karess, R. (2000) Swallowing dynein: a missing link in RNA localization? Nature Cell Biol. 2, E60–E62.

    Article  PubMed  CAS  Google Scholar 

  73. Mahajan-Miklos, S. and Cooley, L. (1994) Intercellular cytoplasm transport during Drosophila oogenesis. Dev. Biol. 165, 336–351.

    Article  PubMed  CAS  Google Scholar 

  74. Robinson, D. N. and Cooley, L. (1997) Drosophila Kelch is an oligomeric ring canal actin organizer. J. Cell Biol. 138, 799–810.

    Article  PubMed  CAS  Google Scholar 

  75. Robinson, D. N., Smith-Leiker, T. A., Sokol, N. S., Hudson, A. M., and Cooley, L. (1997) Formation of the Drosophila ovarian ring canal inner rim depends on cheerio. Genetics 145, 1063–1072

    PubMed  CAS  Google Scholar 

  76. Sokol, N. S. and Cooley, L. (1999) Drosophila Filamin encoded by the cheerio locus is a component of the ovarian ring canals. Curr. Biol. 9, 1221–1230

    Article  PubMed  CAS  Google Scholar 

  77. Field, C. M. and Alberts, B. M. (1995) Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex. J. Cell Biol. 131, 165–178

    Article  PubMed  CAS  Google Scholar 

  78. Minestrini, G., Máthé, E., and Glover, D. M. (2002) Mutations that disrupt the sub-cellular localisation of the Pavarotti kinesin-like protein lead to defects in the tubulin and actin cytoskeleton during Drosophila oogenesis. J. Cell Sci. 115, 725–736.

    PubMed  CAS  Google Scholar 

  79. Koch, E. A. and King, R. C. (1966) The origin and early differentiation of the egg chamber of Drosophila melanogaster. J. Morphol. 119, 283–304.

    Article  PubMed  CAS  Google Scholar 

  80. Bohrmann, J. and Biber, K. (1994) Cytoskeleton-dependent transport of cyto-plasmic particles in previtellogenic to midvitellogenic ovarian follicles of Drosophila: time lapse analysis using video-enhanced contrast microscopy. J. Cell Sci. 107, 849–858.

    PubMed  Google Scholar 

  81. Cooley, L., Verheyen, E., and Ayers, K. (1992) The chickadee gene encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 69, 173–184.

    Article  PubMed  CAS  Google Scholar 

  82. Gutzeit, H. (1990) The microfilament pattern in the somatic follicle cells of mid-vitellogenic ovarian follicles of Drosophila. Eur. J. Cell Biol. 53, 349–356.

    PubMed  CAS  Google Scholar 

  83. Nokkala, S. and Puro, J. (1976) Cytological evidence for a chromocenter in Drosophila melanogaster oocytes. Hereditas 83, 265–268.

    Article  PubMed  CAS  Google Scholar 

  84. Puro, J. and Nokkala, S. (1977) Meiotic segregation of chromosomes in Drosophila melanogaster oocytes. A cytological approach. Chromosoma 63, 273–286.

    Article  Google Scholar 

  85. Neuman-Silberberg, F. S. and Schüpbach, T. (1993) The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell 75, 165–174.

    PubMed  CAS  Google Scholar 

  86. Máthé, E., Bates, H., Huikeshoven, H., Deák, P., Glover, D. M., and Cotterill, S. (2000) Importin-α3 is required at multiple stages of Drosophila development and has a stage specific role in the completion of oogenesis. Dev. Biol. 223, 307–322.

    Article  PubMed  CAS  Google Scholar 

  87. Theurkauf, W.E. and Hawley, R.S. (1992) Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein. J. Cell Biol. 116, 1167–1180.

    Article  PubMed  CAS  Google Scholar 

  88. Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E., and Heald, R. A. (1998). A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol. 8, 903–913.

    Article  PubMed  CAS  Google Scholar 

  89. Walczak, C. E. (2001) Ran hits the ground running. Nature Cell Biol. 3, E69–E71.

    Article  PubMed  CAS  Google Scholar 

  90. Cullen, C. F. and Ohkura, H. (2001) Msps protein is localized to acentrosomal poles to ensure bipolarity of Drosophila meiotic spindles. Nature Cell Biol. 3, 637–642.

    Article  PubMed  CAS  Google Scholar 

  91. Afshar, K., Barton, N. R., Hawley, R. S., and Goldstein, L. S. (1995) DNA binding and meiotic chromosomal localization of the Drosophila nod kinesin-like protein. Cell 81, 129–138.

    Article  PubMed  CAS  Google Scholar 

  92. Sonnenblick, B. P. (1950) The early embryology of Drosophila melanogaster, in Biology of Drosophila (Demerec, M., ed.), Wiley, New York, pp. 62–167.

    Google Scholar 

  93. Puro, J. (1991) Differential mechanisms governing segregation of a univalent in oocytes and spermatocytes of Drosophila melanogaster. Chromosoma 100, 305–314.

    Article  PubMed  CAS  Google Scholar 

  94. Endow, S. A. and Komma, D. J. (1997) Spindle dynamics during meiosis in Drosophila oocytes. J. Cell Biol. 137, 1321–1336.

    Article  PubMed  CAS  Google Scholar 

  95. Endow, S. A. and Komma, D. J. (1998) Assembly and dynamics of an anstral: astral spindle: the meiosis II spindle in Drosophila oocytes. J. Cell Sci. 111, 2487–2495.

    PubMed  CAS  Google Scholar 

  96. Riparbelli, M. G. and Callaini, G. (1996) Meiotic spindle organization in fertilized Drosophila oocyte: presence of centrosomal components in the meiotic apparatus. J. Cell Sci. 109, 911–918.

    PubMed  CAS  Google Scholar 

  97. Wakefield, J. G., Bonaccorsi, S., and Gatti, M. (2001) The Drosophila protein Asp is involved in microtubule organization during spindle formation and cytokinesis. J. Cell Biol. 153, 637–648.

    Article  PubMed  CAS  Google Scholar 

  98. Máthé, E., Boros, I., Jósvay, K., et al. (1998) The Tomaj mutant alleles of αTubulin67C reveal a requirement for the encoded maternal specific tubulin isoform in the sperm aster, the cleavage spindle apparatus and neurogenesis during embryonic development in Drosophila. J. Cell Sci. 111, 887–896.

    PubMed  Google Scholar 

  99. Huettner, A.F. (1924) Maturation and fertilization of Drosophila melanogaster. J. Morphol. 37, 385–423.

    Article  Google Scholar 

  100. Rabinowitz, M. (1941) Studies on the cytology and early embryology of the egg of Drosophila melanogaster. J. Morphol. 69, 1–49.

    Article  Google Scholar 

  101. Orr-Weaver, T. L. (1995) Meiosis in Drosophila: seeing is believing. Proc. Natl. Acad. Sci. USA 92, 10,443–10,449.

    Article  PubMed  CAS  Google Scholar 

  102. Rieder, C. L. and Cole, R. (1999) Chromatid cohesion during mitosis: lessons from meiosis. J. Cell Sci. 112, 2607–2613.

    PubMed  CAS  Google Scholar 

  103. Moore, D. P., Page, A. W., Tang, T. T., Kerrebrock, A. W., and Orr-Weaver, T. (1998) The cohesion protein MEI-S332 localizes to condensed meiotic and mitotic centromeres until sister chromatids separate. J. Cell Biol. 140, 1003–1012.

    Article  PubMed  CAS  Google Scholar 

  104. Lopez, J. M., Karpen, G. H., and Orr-Weaver (2000) Sister-chromatids cohesion via MEI-S332 and kinetochore assembly are separable functions of the Drosophila centromere. Curr. Biol. 10, 997–1000.

    Article  PubMed  CAS  Google Scholar 

  105. Robb, J. A. (1969) Maintenance of imaginal discs of Drosophila melanogaster in chemically defined media. J. Cell Biol. 41, 876–885.

    Article  PubMed  CAS  Google Scholar 

  106. Mahowald, A. P., Goralski, T. J., and Caulton, J. H. (1983). In vitro activation of Drosophila eggs. Dev. Biol. 98, 437–445.

    Article  PubMed  CAS  Google Scholar 

  107. Page, A. W. and Orr-Weaver, T. L. (1997) Activation of the meiotic divisions in Drosophila oocytes. Dev. Biol. 183, 195–207.

    Article  PubMed  CAS  Google Scholar 

  108. Tavosanis, G., Llamazares, S., Goulielmos, G., and Gonzalez, C. (1997) Essential role for γ-tubulin in the acentriolar female meiotic spindle of Drosophila. EMBO. J. 16, 1809–1819.

    Article  PubMed  CAS  Google Scholar 

  109. Szabad, J. (1998) Genetic requirement of epidermal and female germline cells in Drosophila in the light of clonal analysis. Int. J. Dev. Biol. 42, 257–262.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Máthé, E. (2004). Immunocytological Analysis of Oogenesis. In: Henderson, D.S. (eds) Drosophila Cytogenetics Protocols. Methods in Molecular Biology, vol 247. Humana Press. https://doi.org/10.1385/1-59259-665-7:89

Download citation

  • DOI: https://doi.org/10.1385/1-59259-665-7:89

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-050-2

  • Online ISBN: 978-1-59259-665-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics