Skip to main content

Extraction of Membrane Proteins

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 244))

Abstract

The landmark paper on biomembrane structure in 1972 by Singer and Nicolson (1) is still widely accepted as an excellent working hypothesis (2), but a more rigid micro domain structure is now believed to exist in native membranes (35). The original fluid mosaic model of biomembrane structure basically defined two classes of membrane proteins that are associated, to varying degrees, with the phospholipid bilayer (1). In addition to peripheral and integral membrane proteins, a third class of membrane proteins is represented by lipid-anchored proteins (6). In addition to these protein-membrane interactions, certain components of the membrane cytoskeleton and the extracellular matrix are also directly or indirectly associated via binding-proteins or receptor molecules with membranes (7). Treatment of biological membranes with salt solutions or change in pH usually dissociates peripheral proteins because these extrinsic membrane proteins interact with the membrane surface mostly via electrostatic and hydrogen bonds. Integral membrane proteins that possess hydrophobic surfaces are more strongly associated with the bilayer and these intrinsic proteins extend across or are partially inserted into the lipid bilayer. Extraction of integral membrane proteins is commonly accomplished by solubilizing the protein-containing membrane fraction using a variety of detergents (8) (see Fig. 1).

Diagrammatic representation of the different kinds of membrane proteins and the most commonly employed methods to extract them from biological membranes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Singer, S. J. and Nicholson, G. L. (1972) The fluid mosaic model of the structure of cell membranes. Science 175, 720–731.

    Article  PubMed  CAS  Google Scholar 

  2. Jacobson, K., Sheet, E. D., and Simson, R. (1995) Revisiting the fluid mosaic model of membranes. Science 268, 1441–1442.

    Article  PubMed  CAS  Google Scholar 

  3. Kinnunen, P. K. (1991) On the principles of functional ordering in biological membranes. Chem. Phys. Lipids 57, 375–399.

    Article  PubMed  CAS  Google Scholar 

  4. Tocanne, J. F., Cezanne, L., Lopez A., et al. (1994) Lipid domains and lipid/protein interactions in biological membranes. Chem. Phys. Lipids 73, 139–158.

    Article  PubMed  CAS  Google Scholar 

  5. Somerharju, P., Virtanen, J. A., and Cheng, K. H. (1999) Lateral organisation of membrane lipids. The superlattice view. Biochim. Biophys. Acta 1440, 32–48.

    PubMed  CAS  Google Scholar 

  6. Varma, R. and Mayor, S. (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801.

    Article  PubMed  CAS  Google Scholar 

  7. Ohlendieck, K. (1996) Towards an understanding of the dystrophin-glycoprotein complex: linkage between the extracellular matrix and the membrane cytoskeleton in muscle fibres. Eur. J. Cell Biol. 69, 1–10.

    PubMed  CAS  Google Scholar 

  8. LeMaire, M., Champeil, P., and Moller, J. V. (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim. Biophys. Acta 1508, 86–111.

    Article  CAS  Google Scholar 

  9. Penefsky, H. S. and Tzagoloff, A. (1971) Extraction of water-soluble enzymes and proteins from membranes. Methods Enzymol. 22, 204–219.

    Article  Google Scholar 

  10. Thomas, T C. and McNamee, M. G. (1990) Purification of membrane proteins. Methods Enzymol. 182, 499–520.

    Article  PubMed  CAS  Google Scholar 

  11. Scopes, R. K. (1994) Protein Purification: Principles and Practice, 3rd ed., Springer-Verlag, New York.

    Google Scholar 

  12. Helenius, A. and Simons, K. (1975) Solubilization of membranes by detergents. Biochim. Biophys. Acta 415, 29–79.

    PubMed  CAS  Google Scholar 

  13. Neugebauer, J. M. (1990) Detergents: an overview. Methods Enymol. 182, 239–252.

    Article  CAS  Google Scholar 

  14. Jones, O. T., Earnest, J. P., and McNamee, M. G. (1987) Solubilization and reconstitution of membrane proteins, in Biological Membranes, a Pactical Approach (Findlay, J. B. C. and Evans, W. H., eds.), IRL, Oxford, pp. 139–172.

    Google Scholar 

  15. LaemmLi, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227, 680–685.

    Article  CAS  Google Scholar 

  16. MacLennan, D. H. (1970) Purification and characterization of an adenosine triphosphate from sarcoplamic reticulum J. Biol. Chem. 245, 4508–4518.

    PubMed  CAS  Google Scholar 

  17. MacLennan, D. H., Brandl, C. J., Korczak, G., and Green, N. M. (1985) Amino-acid sequence of a Ca2++Mg2+-dependent ATPase from rabbit sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316, 696–701.

    Article  PubMed  CAS  Google Scholar 

  18. MacLennan, D. H., Rice, W. J., and Green, N. M. (1997) The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases. J. Biol. Chem. 272, 28,815–28,818.

    Article  PubMed  CAS  Google Scholar 

  19. MacLennan, D. H. and Wong, P. T. S. (1971) Isolation of a calcium-sequestrating protein from sarcoplasmic reticulum. Proc. Natl. Acad. Sci. USA 68, 1231–1235.

    Article  PubMed  CAS  Google Scholar 

  20. Fliegel, L., Ohnishi, M., Carpenter, M. R., Khanna, V. K., Reithmeier, R. A. F., and MacLennan, D. H. (1987) Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing. Proc. Natl. Acad. Sci. USA 84, 1167–1171.

    Article  PubMed  CAS  Google Scholar 

  21. Yano, K. and Zarain-Herzberg, A. (1994) Sarcoplasmic reticulum calsequestrins: structural and functional properties. Mol. Cell Biochem. 135, 61–70.

    Article  PubMed  CAS  Google Scholar 

  22. Murray, B., Froemming, G. R., Maguire, P. B., and Ohlendieck, K. (1998) Excitation-contraction-relaxation cycle: role of Ca2+-regulatory membrane proteins in normal, stimulated and pathological skeletal muscle fibres. [review]. Int. J. Mol. Med. 1, 677–697.

    PubMed  CAS  Google Scholar 

  23. Eletr, S. and Inesi, G (1972) Phospholipid orientation in sarcoplasmic membranes: spinlabel ESR and proton NMR studies. Biochim. Biophys. Acta 282, 174–179.

    Article  PubMed  CAS  Google Scholar 

  24. Meissner, G., Conner, G. E., and Fleischer, S. (1973) Isolation of sarcoplasmic reticulum by zonal centrifugation and purification of Ca2+-pump and Ca2+-binding proteins. Biochim. Biophys. Acta 298, 246–269.

    Article  PubMed  CAS  Google Scholar 

  25. McLennan, D. H. (1975) Isolation of proteins of the sarcoplasmic reticulum. Methods Enzymol. 32, 291–302.

    Article  Google Scholar 

  26. Chan, K. M., Delfert, D., and Junger, K. D. (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal. Biochem. 157, 375–380.

    Article  PubMed  CAS  Google Scholar 

  27. Hartree, E. F (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 48, 422–427.

    Article  PubMed  CAS  Google Scholar 

  28. Cala, S. E. and Jones, L. R. (1983) Rapid purification of calsequestrin from cardiac and skeletal muscle sarcoplasmic reticulum vesicles by Ca2+-dependent elution from Phenyl-Sepharose. J. Biol. Chem. 258, 11,932–11,936.

    PubMed  CAS  Google Scholar 

  29. Warren, G. B., Toon, P. A., Birdsall, N. J. M., Lee, A. G., and Metcalfe, J. C. (1974) Reconstitution of a calcium pump using defined membranecomponents. Proc. Natl. Acad. Sci. USA 71, 622–626.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Ohlendieck, K. (2004). Extraction of Membrane Proteins. In: Cutler, P. (eds) Protein Purification Protocols. Methods in Molecular Biology, vol 244. Humana Press. https://doi.org/10.1385/1-59259-655-X:283

Download citation

  • DOI: https://doi.org/10.1385/1-59259-655-X:283

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-067-0

  • Online ISBN: 978-1-59259-655-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics