Skip to main content

Impairment of Neurotransmitter Metabolism and Function by Neurotoxicants

Enzyme Pathways in Neurons and Astroglia

  • Protocol
In Vitro Neurotoxicology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 381 Accesses

Abstract

In order to perform neurotoxicological studies, model systems have to be established and techniques developed to analyze relevant parameters. The present chapter describes the in vitro effects of the neurotoxicants aminooxyacetic acid (AOAA), 3-nitropropionic acid (3-NPA), and methylmercury (MeHg) on glial cell neurotransmitters, and for 3-NPA, we also describe the effects on cultured neurons. Major emphasis is directed at the effects of these compounds on glutamate metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schousboe, A., Meier, E., Drejer, J., and Hertz, L. (1989) Preparation of primary cultures of mouse (rat) cerebellar granule cells, in A Dissection and Tissue Culture Manual of the Nervous System (Shahar, A., De Vellis, J., Vernadakis, A., and Haber B., eds.), Alan R. Liss, New York, pp. 183–186.

    Google Scholar 

  2. Hertz, E., Yu, A. C. H., Hertz, L., Juurlink, B. H. J., and Schousboe, A. (1989) Preparation of primary cultures of mouse (rat) neurons, in A Dissection and Tissue Culture Manual of the Nervous System (Shahar, A., De Vellis, J., Vernadakis, A., and Haber, B, eds.), Alan R Liss, New York, pp. 183–186.

    Google Scholar 

  3. Hertz, L., Juurlink, B. H. J., Hertz, E., Fosmark, H., and Schousboe, A. (1989) Preparation of primary cultures of mouse (rat) astrocytes, in A Dissection and Tissue Culture Manual of the Nervous System (Shahar, A., De Vellis, J., Vernadakis, A., and Haber, B., eds.), Alan R. Liss, New York, pp. 105–108.

    Google Scholar 

  4. Aschner, M. and Kimelberg, H. K. (eds.) (1996) The Role of Glia in Neurotoxicology, CRC, Boca Raton, FL.

    Google Scholar 

  5. Kettenmann, H. and Ransom, B. R. (eds.) (1995) Neuroglia, Oxford University Press, New York.

    Google Scholar 

  6. Schousboe, A., Westergaard, N., Sonnewald, U., Peterson, S. B., Yu, A. C. H., and Hertz, L. (1992) Regulatory role of astrocytes for neuronal biosynthesis and homeostasis of glutamate and GABA. Prog. Brain Res. 94, 199–211.

    Article  PubMed  CAS  Google Scholar 

  7. Rakic, R. (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J. Comp. Neurol. 141, 283–312.

    Article  PubMed  CAS  Google Scholar 

  8. Rudge, J. S. (1993) Astrocyte-derived neurotrophic factors, in Astrocytes: Pharmacology and Function (Murphy, S., ed.), Academic, San Diego, CA, pp. 267–308.

    Google Scholar 

  9. Martinez-Hernandez, A., Bell, K. P., and Norenberg, M. D. (1977) Glutamine synthetase: glial localization in brain. Science 195, 1356–1358.

    Article  PubMed  CAS  Google Scholar 

  10. Schousboe, A., Westergaard, N., Sonnewald, U., Peterson, S. B., Huang, R., and Peng, L. (1993) Glutamate and glutamine metabolism and compartmentation in astrocytes. Dev. Neurosci. 15, 359–366.

    Article  PubMed  CAS  Google Scholar 

  11. Sonnewald, U., Westergaard, N., and Schousboe, A. (1997) Glutamate transport and metabolism in astrocytes. Glia 21, 56–63.

    Article  PubMed  CAS  Google Scholar 

  12. Dringen, R., Pfeiffer, B., and Hamprecht, B. (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J. Neurosci. 19, 562–569.

    PubMed  CAS  Google Scholar 

  13. Sagara, J., Miura, K., and Bannai, S. (1993) Maintenance of neuronal glutathione by glial cells. J. Neurochem. 61, 1672–1676.

    Article  PubMed  CAS  Google Scholar 

  14. Sagara, Y. and Schubert, D. (1998) The activation of metabotropic glutamate receptors protects nerve cells from oxidative stress. J. Neurosci. 18, 6662–6671.

    PubMed  CAS  Google Scholar 

  15. Wang, X. F. and Cynader, M. S. (2000) Astrocytes provide cysteine to neurons by releasing glutathione. J. Neurochem. 74, 1434–1442.

    Article  PubMed  CAS  Google Scholar 

  16. Ullian, E. M., Sapperstein, S. K., Christopherson, K. S., and Barres, B. A. (2001) Control of synapse number by glia. Science 291, 657–661.

    Article  PubMed  CAS  Google Scholar 

  17. Bezzi, P., Domercq, M., Brambilla, L., et al. (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nature Neurosci. 4, 702–710.

    Article  PubMed  CAS  Google Scholar 

  18. Hassel, B. and Sonnewald, U. (1995) Glial formation of pyruvate and lactate from TCA cycle intermediates: implications for the inactivation of transmitter amino acids. J. Neurochem. 65, 2227–2234.

    Article  PubMed  CAS  Google Scholar 

  19. Hassel, B., Sonnewald, U., and Fonnum F (1995) Glial-neuronal interactions as studied by cerebral metabolism of [2-13C]acetate and [1-13C]glucose: an ex vivo 13C NMR spectroscopy study. J. Neurochem. 64, 2773–2782.

    Article  PubMed  CAS  Google Scholar 

  20. Håberg, A., Qu, H., Haraldseth, O., Unsgård, G., and Sonnewald, U. (1998) In vivo injection of [1-13C]glucose and [1,2-13C]acetate combined with ex vivo 13C nuclear magnetic resonance spectroscopy: a novel approach to the study of middle cerebral artery occlusion in the rat. J. Cereb. Blood Flow Metab. 18, 1223–1232.

    Article  PubMed  Google Scholar 

  21. Hassel, B. and Sonnewald, U. (1995) Selective inhibition of the TCA cycle of GABAergic neurons with 3-nitropropionic acid in vivo. J. Neurochem. 65, 1184–1191.

    Article  PubMed  CAS  Google Scholar 

  22. Hassel, B., Bachelard, H., Fonnum, F., and Sonnewald, U. (1997) Trafficking of amino acids between neurons and glia in vivo. Effects of inhibition of glial metabolism by fluoroacetate. J. Cereb. Blood Flow Metab. 17, 1230–1238.

    Article  PubMed  CAS  Google Scholar 

  23. Hassel, B., Sonnewald, U., Unsgård, G., and Fonnum, F. (1994) NMR spectroscopy of cultured astrocytes; synthesis of citrate and glutamine by different TCA cycles. Effects of glutamine and the gliotoxin fluorocitrate. J. Neurochem. 62, 2187–2194.

    Article  PubMed  CAS  Google Scholar 

  24. Bakken, I. J., White, L. R., Unsgård, G., Aasly, J., and Sonnewald, U. (1998) [U-13C]glutamate metabolism in astrocytes during hypoglycemia and hypoxia. J. Neurosci. Res. 51, 636–645.

    Article  PubMed  CAS  Google Scholar 

  25. Bakken, I. J., Johnsen, S. F., White, L. R., Unsgård, G., Åsly, J., and Sonnewald, U. (1997) NMR spectroscopy study of the effect of 3-nitropropionic acid on glutamate metabolism in cultured astrocytes. J. Neurosci. Res. 47, 642–649.

    Article  PubMed  CAS  Google Scholar 

  26. Westergaard, W., Drejer, J., Schousboe, A., and Sonnewald, U. (1996) Evaluation of the importance of transamination versus deamination in astrocytic metabolism of (U-13C(glutamate. Glia 17, 160–168.

    Article  PubMed  CAS  Google Scholar 

  27. Sonnewald, U., Westergaard, N., Petersen, S. B., Unsgård, G., and Schousboe, A. (1993) Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the TCA cycle. J. Neurochem. 61, 1179–1182.

    Article  PubMed  CAS  Google Scholar 

  28. McKenna, M. C., Sonnewald, U., Huang, X., Stevenson, J., and Zielke, R. H. (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J. Neurochem. 66, 386–393.

    Article  PubMed  CAS  Google Scholar 

  29. Sonnewald, U., Westergaard, N., Drejer, J., and Schousboe, A. (1996) Evaluation of the importance of transamination versus deamination in astrocytic metabolism of [U-13C]glutamate: implications for neurodegenerative diseases. Glia 17, 160–168.

    Article  PubMed  Google Scholar 

  30. Sonnewald, U., White, L., ∅degård, E., et al. (1996) MRS study of glutamate metabolism in cultured neurons/glia. Neurochem. Res. 21, 987–993.

    Article  PubMed  CAS  Google Scholar 

  31. Beal, M. F., Hyman, B. T., and Koroshetz, W. (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci. 16, 125–131.

    Article  PubMed  CAS  Google Scholar 

  32. Urbanska, E., Ikonomidou, C., Sieklucka, M., and Turski, W. A. (1991) Aminooxyacetic acid produces excitotoxic lesions in rat striatum. Synapse 9, 129–135.

    Article  PubMed  CAS  Google Scholar 

  33. Beal, M. F., Swartz, K. J., Hyman, B. T., Storey, E., Finn, S. F., and Koroshetz, W. (1991) Aminooxyacetic acid results in excitotoxin lesions by a novel indirect mechanism. J. Neurochem. 57, 1068–1073.

    Article  CAS  Google Scholar 

  34. Gegelashvili, G. and Schousboe, A. (1998) Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Res. Bull. 45, 233–238.

    Article  PubMed  CAS  Google Scholar 

  35. Hertz, L., Dringen, R., Schousboe, A., and Robinson, S. R. (1999) Astrocytes: glutamate producers for neurons. J. Neurosci. Res. 57, 417–428.

    Article  PubMed  CAS  Google Scholar 

  36. Shank, R. P. and Aprison, M. H. (1977) Glutamine uptake and metabolism by the isolated toad brain: evidence pertaining to its proposed role as a transmitter precursor. J. Neurochem. 28, 1189–1196.

    Article  PubMed  CAS  Google Scholar 

  37. Farinelli, S.E. and Nicklas, W. J. (1992) Glutamate metabolism in rat cortical astrocyte cultures. J. Neurochem. 58, 1905–1915.

    Article  PubMed  CAS  Google Scholar 

  38. Yu, A. C., Fisher, T. E., Hertz, E., Tildon, J. T., Schousboe, A., and Hertz, L. (1984) Metabolic fate of [14C]-glutamine in mouse cerebral neurons in primary cultures. J. Neurosci. Res. 11, 351–357.

    Article  PubMed  CAS  Google Scholar 

  39. Yudkoff, M., Nissim, I., Hummeler, K., Medow, M., and Pleasure, D. (1986) Utilization of [15N]glutamate by cultured astrocytes. Biochem. J. 234, 185–192.

    PubMed  CAS  Google Scholar 

  40. Cooper, A. J. and Plum, F. (1987) Biochemistry and physiology of brain ammonia. Physiol. Rev. 67, 440–519.

    PubMed  CAS  Google Scholar 

  41. Plaitakis, A. and Berl, S. (1988) Pathology of glutamate dehydrogenase, in Glutamine and glutamate in mammals (Kvamme, E., ed.), CRC, Boca Raton, FL, pp. 128–140.

    Google Scholar 

  42. Wullner, U., Young, A. B., Penney, J. B., and Beal, M. F. (1994) 3-Nitropropionic acid toxicity in the striatum. J. Neurochem. 63, 1772–1781.

    Article  PubMed  CAS  Google Scholar 

  43. Brouillet, E., Jenkins, B. G., Hyman, B. T., et al. (1993) Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J. Neurochem. 60, 356–359.

    Article  PubMed  CAS  Google Scholar 

  44. Erecinska, M. and Nelson, D. (1994) Effects of 3-nitropropionic acid on synaptosomal energy and transmitter metabolism: relevance to neurodegenerative brain diseases. J. Neurochem. 63, 1033–1041.

    Article  PubMed  CAS  Google Scholar 

  45. Beal, M. F, Brouillet, E., Jenkins, B., Henshaw, R., and Hyman B. T. (1993) Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. J. Neurochem. 61, 1147–1150.

    Article  PubMed  CAS  Google Scholar 

  46. Yu, A. C. H, Drejer, J., Hertz, L., and Schousboe, A. (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J. Neurochem. 41, 1484–1487.

    Article  PubMed  CAS  Google Scholar 

  47. Brookes, N. and Kristt, D. A. (1989) Inhibition of amino acid transport and protein synthesis by HgCl2 and methylmercury in astrocytes: selectivity and reversibility. J. Neurochem. 53, 1228–1237.

    Article  PubMed  CAS  Google Scholar 

  48. Kim, S. U., Park, S. T., Lim, K. T., and Chung, Y. T. (1996) Methylmercuryinduced neurotoxicity in cerebral neuron culture is blocked by antioxidants and NMDA receptor antagonists. Neurotoxicology 17, 37–45.

    PubMed  Google Scholar 

  49. Ali, S. F., LeBel, C. P., and Bondy, S.C. (1992). Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity, Neurotoxicology 13, 637–648.

    PubMed  CAS  Google Scholar 

  50. Ganther, H. E., Goudie, C., Sunde, M. L., et al. (1972) Selenium: relation to decreased toxicity of methyl mercury added to diet containing tuna. Science 75, 1122–1124.

    Article  Google Scholar 

  51. Yee, S. and Choi, B. H. (1996) Oxidative stress in neurotoxic effects of methylmercury poisoning. Neurotoxicology 17, 17–26.

    PubMed  CAS  Google Scholar 

  52. Atchison, W. D. and Hare, M. F. (1994) Mechanisms of methylmercury-induced neurotoxicity, FASEB J. 8, 622–629.

    PubMed  CAS  Google Scholar 

  53. Charleston, J. S., Body, R. L., Mottet, N. K., Vahter, M. E., and Burbacher, T. M. (1995) Autometallographic determination of inorganic mercury distribution in the cortex of the carlacrine sulcus of the monkey Macaca fascicularis following long-term subclinical exposure to methylmercury and mercuric. Toxicol. Appl. Pharmacol. 132, 325–333.

    Article  PubMed  CAS  Google Scholar 

  54. Garman, R. H., Weiss, B., and Evans, H. L. (1975) Alkylmercurial encephalopathy in the monkey (Saimiri sciureus and Macaca arctoides): a histopathologic and autoradiographic study. Acta Neuropathol. 32, 61–74.

    Article  PubMed  CAS  Google Scholar 

  55. Aschner, M., Eberle, N. B., Miller, K., and Kimelberg, H. K. (1990) Interactions of methylmercury with rat primary astrocyte cultures: inhibition of rubidium and glutamate uptake and induction of swelling. Brain Res. 530, 245–250.

    Article  PubMed  CAS  Google Scholar 

  56. Aschner, M., Yao, C. P., Allen J. W., and Tan, K. H. (2000) Methylmercury alters glutamate transport in astrocytes. Neurochem. Int. 37, 199–206.

    Article  PubMed  CAS  Google Scholar 

  57. Coyle, J. T. and Puttfarken, P. (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 689–695.

    Article  PubMed  CAS  Google Scholar 

  58. Volterra, A., Trotti, D., Tromba, C., Floridi, S., and Racagni, G. (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J. Neurosci. 14, 2924–2932.

    PubMed  CAS  Google Scholar 

  59. Volterra, A., Trotti, D., and Racagni, G. (1994) Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms. Mol. Pharm. 46, 986–992.

    CAS  Google Scholar 

  60. Trotti, D., Nussberger, S., Volterra, A., and Hediger, M. A. (1997) Differential modulation of the uptake currents by redox interconversion of cysteine residues in the human neuronal glutamate transporter EAAC1. Eur. J. Neurosci. 9, 236–124.

    Google Scholar 

  61. Murphy, T. H., Schnaar, R. L., and Coyle, J. T. (1990) Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. FASEB J. 4, 1624–1633.

    PubMed  CAS  Google Scholar 

  62. Sarafian, T. A., Vartavarian, L., Kane, D. J., Bredesen, D. E., and Verity, M. A. (1994) Bcl-2 expression decreases methyl mercury-induced free-radical generation and cell killing in a neural cell line. Toxicol. Lett. 74, 149–155.

    Article  PubMed  CAS  Google Scholar 

  63. Philbert, M. A., Beiswanger, C. M., Waters, D. K., Reuhl, K. R., and Lowndes, H. E. (1991) Cellular and regional distribution of reduced glutathione in the nervous system of the rat: histochemical localization by mercury orange and o-phthaldialdehyde-induced histofluorescence. Toxicol. Appl. Pharmacol. 107, 215–227.

    Article  PubMed  CAS  Google Scholar 

  64. Allen, J. W., Shanker, G., and Aschner, M. (2001) Methylmercury inhibits the in vitro uptake of the glutathione precursor, cystine, in astrocytes but not in neurons. Brain Res. 891, 148–157.

    Article  PubMed  CAS  Google Scholar 

  65. Bannai, S. (1984) Transport of cystine and cysteine in mammalian cells. Biochim. Biophys. Acta 779, 289–306.

    PubMed  CAS  Google Scholar 

  66. Bender, A. S., Reichelt, W., and Norenberg, M. D. (2000) Characterization of cystine uptake in cultured astrocytes. Neurochem. Int. 37, 269–276.

    Article  PubMed  CAS  Google Scholar 

  67. Miura, K. and Clarkson, T. W. (1993) Reduced methylmercury accumulation in a methylmercury-resistant rat pheochromocytoma PC12 cell line. Toxicol. Appl. Pharmacol. 118, 39–45.

    Article  PubMed  CAS  Google Scholar 

  68. Aschner, M., Mullaney, K. J., Wagoner, D, Lash, L. H., and Kimelberg, H. K. (1994) Intracellular glutathione (GSH) levels modulate mercuric chloride (MC)-and methylmercuric chloride (MeHgCl)-induced amino acid release from neonatal rat primary astrocytes cultures. Brain Res. 664, 133–140.

    Article  PubMed  CAS  Google Scholar 

  69. Bannai, S. and Kitamura, E. (1980) Transport interaction of l-cystine and l-glutamate in human diploid fibroblasts in culture. J. Biol. Chem. 255, 2372–2376.

    PubMed  CAS  Google Scholar 

  70. Schlag, B. D., Vondrasek, J. R., Munir, M., et al. (1998) Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons. J. Neurosci. 53, 355–369.

    CAS  Google Scholar 

  71. Allen, J. W., Mutkus, L. A., and Aschner, M. (2001) Methylmercury-mediated inhibition of 3H-d-aspartate transport in cultured astrocytes is reversed by the antioxidant catalase. Brain Res. 902, 97–100.

    Article  Google Scholar 

  72. Vitarella, D., Kimelberg, H. K., and Aschner, M. (1996) Inhibition of regulatory volume decrease in swollen rat primary astrocyte cultures by methylmercury is due to increased amiloride-sensitive Na+ uptake. Brain Res. 732, 169–178.

    Article  PubMed  CAS  Google Scholar 

  73. Kranich, O., Dringen, R., Sandberg, M., and Hamprecht, B. (1998) Utilization of cysteine and cysteine precursors for the synthesis of glutathione in astroglial cultures: preference for cystine. Glia 22, 11–18.

    Article  PubMed  CAS  Google Scholar 

  74. Monaghan, D. T., Holets, V. R., Toy, V. W., and Cotman, C. W. (1983) Anatomical distributions of four pharmacologically distinct 3H-l-glutamate binding sites. Nature 306, 176–179.

    Article  PubMed  CAS  Google Scholar 

  75. Monaghan, D. T. and Cotman, C. W. (1985) Distribution of NMDA-sensitive 3H-l-glutamate binding sites in rat brain as determined by quantative autoradiography. J. Neurosci. 5, 2909–2919.

    PubMed  CAS  Google Scholar 

  76. Sonnewald, U., Hertz, L., and Schousboe, A. (1998) Mitochondrial heterogeneity in the brain at the cellular level. J. Cereb. Blood Flow Metab. 18, 231–237.

    Article  PubMed  CAS  Google Scholar 

  77. Allen, J. W., El-Oqayli, H., Aschner, M., Syversen, T., and Sonnewald, U. Methylmercury has a selective effect on mitochondria in cultured astrocytes in the presence of [U-13C]glutamate. Brain Res. 908, 149–154.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Aschner, M., Sonnewald, U. (2004). Impairment of Neurotransmitter Metabolism and Function by Neurotoxicants. In: Tiffany-Castiglioni, E., Hollinger, M.A. (eds) In Vitro Neurotoxicology. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1385/1-59259-651-7:133

Download citation

  • DOI: https://doi.org/10.1385/1-59259-651-7:133

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-047-2

  • Online ISBN: 978-1-59259-651-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics