Advertisement

Impairment of Synaptic Function by Exposure to Lead

  • Stephen M. Lasley
  • Mary E. Gilbert
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Of all known neurotoxicants, lead (Pb) has received by far the most research attention. Because of increasing awareness of its untoward effects, investigation of the metal’s central nervous system (CNS) actions has extended over several decades and across multiple experimental species, methods, and approaches. As a result, numerous actions of lead on the brain have been uncovered at the cellular and systems levels (e.g., ref. 1). Nonetheless, progress toward defining the specific bases of the neurotoxicity observed in exposed young children has been slow and inefficient and has not been commensurate with the magnitude of effort invested. Multiple factors have limited the development of this new information, but one of the most prominent has been the difficulty in linking findings obtained with in vitro approaches to neurotoxicity present in vivo.

Keywords

NMDA Receptor Hippocampal Slice NMDA Receptor Function NMDA Receptor Channel Neurite Initiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cory-Slechta, D. A. (1995) Relationships between lead-induced learning impairments and changes in dopaminergic, cholinergic, and glutamatergic neu-rotransmitter system functions. Annu. Rev. Pharmacol. Toxicol. 35, 391–415.PubMedCrossRefGoogle Scholar
  2. 2.
    Long, G. J., Rosen, J. F., and Schanne, F. A. X. (1994) Lead activation of protein kinase C from rat brain. J. Biol. Chem. 269, 834–837.PubMedGoogle Scholar
  3. 3.
    Kern, M. and Audesirk, G. (1995) Inorganic lead may inhibit neurite development in cultured rat hippocampal neurons through hyperphosphorylation. Toxicol. Appl. Pharmacol. 134, 111–123.PubMedCrossRefGoogle Scholar
  4. 4.
    Tomsig, J. L. and Suszkiw, J. B. (1995) Multisite interactions between Pb2+ and protein kinase C and its role in norepinephrine release from bovine adrenal chromaffin cells. J. Neurochem. 64, 2667–2773.PubMedCrossRefGoogle Scholar
  5. 5.
    Paoletti, P., Ascher, P., and Neyton, J. (1997) High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J. Neurosci. 17, 5711–5725.PubMedGoogle Scholar
  6. 6.
    Traynelis, S. F., Burgess, M. F., Zheng, F., Lyuboslavsky, P., and Powers, J. L. (1998) Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J. Neurosci. 18, 6163–6175.PubMedGoogle Scholar
  7. 7.
    Smith, R. M. and Martell, A. E. (1976) Critical Stability Constants, Plenum, New York.Google Scholar
  8. 8.
    Simons, T. J. B. (1985) Influence of lead ions on cation permeability in human red cell ghosts. J. Membr. Biol. 84, 61–71.PubMedCrossRefGoogle Scholar
  9. 9.
    Schoenmakers, T. J. M., Visser, G. J., Flik, G., and Theuvenet, A. P. R. (1992) Chelator: an improved method for computing metal ion concentrations in physiological solutions. BioTechniques 12, 870–879.PubMedGoogle Scholar
  10. 10.
    Fabiato, A. (1988) Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 157, 378–417.PubMedCrossRefGoogle Scholar
  11. 11.
    Srivastava, D., Hurwitz, R. L., and Fox, D. A. (1995) Lead-and calcium-mediated inhibition of bovine rod cGMP phosphodiesterase: interactions with magnesium. Toxicol. Appl. Pharmacol. 134, 43–52.PubMedCrossRefGoogle Scholar
  12. 12.
    Kober, T. E. and Cooper, G. P. (1976) Lead competitively inhibits calcium-dependent synaptic transmission in the bullfrog sympathetic ganglion. Nature 262, 704–705.PubMedCrossRefGoogle Scholar
  13. 13.
    Manalis, R. S., Cooper, G. P., and Pomeroy, S. L. (1984) Effects of lead on neuromuscular transmission in the bullfrog. Brain Res. 294, 95–109.PubMedCrossRefGoogle Scholar
  14. 14.
    Suszkiw, J., Toth, G., Murawsky, M., and Cooper, G. P. (1984) Effects of Pb2+ and Cd2+ on acetylcholine release and Ca2+ movements in synaptosomes and subcellular fractions from rat brain and Torpedo electric organ. Brain Res. 323, 31–46.PubMedCrossRefGoogle Scholar
  15. 15.
    Minnema, D. J., Greenland, R. D., and Michaelson, I. A. (1986) Effect of in vitro inorganic lead on dopamine release from superfused rat striatal synapto-somes. Toxicol. Appl. Pharmacol. 84, 400–411.PubMedCrossRefGoogle Scholar
  16. 16.
    Minnema, D. J. and Michaelson, I. A. (1986) Differential effects of inorganic lead and delta-aminolevulinic acid in vitro on synaptosomal gamma-aminobutyric acid release. Toxicol. Appl. Pharmacol. 86, 437–447.PubMedCrossRefGoogle Scholar
  17. 17.
    Minnema, D. J., Michaelson, I. A., and Cooper, G. P. (1988) Calcium efflux and neurotransmitter release from rat hippocampal synaptosomes exposed to lead. Toxicol. Appl. Pharmacol. 92, 351–357.PubMedCrossRefGoogle Scholar
  18. 18.
    Shao, Z. and Suszkiw, J. B. (1991) Ca2+ surrogate action of Pb2+ on acetylcholine release from rat brain synaptosomes. J. Neurochem. 56, 568–574.PubMedCrossRefGoogle Scholar
  19. 19.
    Audesirk, G. and Audesirk, T. (1991) Effects of inorganic lead on voltage-sensitive calcium channels in N1E-115 neuroblastoma cells. NeuroToxicology 12, 519–528.PubMedGoogle Scholar
  20. 20.
    Sun, L. R. and Suszkiw, J. B. (1995) Extracellular inhibition and intracellular enhancement of Ca2+ currents by Pb2+ in bovine adrenal chromaffin cells. J. Neurophysiol. 74, 574–581.PubMedGoogle Scholar
  21. 21.
    Tomsig, J. L. and Suszkiw, J. B. (1996) Metal selectivity of exocytosis in α-toxin-permeabilized bovine chromaffin cells. J. Neurochem. 66, 644–650.PubMedCrossRefGoogle Scholar
  22. 22.
    Westerink, R. H. S. and Vijverberg, H. P. M. (2002) Ca2+-independent vesicular catecholamine release in PC12 cells by nanomolar concentrations of Pb2+. J. Neurochem. 80, 861–873.PubMedCrossRefGoogle Scholar
  23. 23.
    Goldstein, G. W. (1993) Evidence that lead acts as a calcium substitute in second messenger metabolism. NeuroToxicology 14, 97–102.PubMedGoogle Scholar
  24. 24.
    Braga, M. F. M., Pereira, E. F. R., and Albuquerque, E. X. (1999) Nanomolar concentrations of lead inhibit glutamatergic and GABAergic transmission in hippocampal neurons. Brain Res. 826, 22–34.PubMedCrossRefGoogle Scholar
  25. 25.
    Braga, M. F. M., Pereira, E. F. R., Marchioro, M., and Albuquerque, E. X. (1999) Lead increases tetrodotoxin-insensitive spontaneous release of glutamate and GABA from hippocampal neurons. Brain Res. 826, 10–21.PubMedCrossRefGoogle Scholar
  26. 26.
    Lasley, S. M. and Gilbert, M. E. (1996) Presynaptic glutamatergic function in dentate gyrus in vivo is diminished by chronic exposure to inorganic lead. Brain Res. 736, 125–134.PubMedCrossRefGoogle Scholar
  27. 27.
    Lasley, S. M., Green, M. C, and Gilbert, M. E. (1999) Influence of exposure period on in vivo hippocampal glutamate and GABA release in rats chronically exposed to lead. NeuroToxicology 20, 619–630.PubMedGoogle Scholar
  28. 28.
    Lasley, S. M. and Gilbert, M. E. (2002) Rat hippocampal glutamate and GABA release exhibit biphasic effects as a function of chronic lead exposure level. Toxicol. Sci. 66, 139–147.PubMedCrossRefGoogle Scholar
  29. 29.
    Alkondon, M., Costa, A. C. S., Radhakrishnan, V., Aronstam, R. S., and Albuquerque, E. X. (1990) Selective blockade of NMDA-activated channel currents may be implicated in learning deficits caused by lead. FEBS Lett. 261, 124–130.PubMedCrossRefGoogle Scholar
  30. 30.
    Guilarte, T. R. and Miceli, R. C. (1992) Age-dependent effects of lead on [3H]MK-801 binding to the NMDA receptor-gated ionophore: in vitro and in vivo studies. Neurosci. Lett. 148, 27–30.PubMedCrossRefGoogle Scholar
  31. 31.
    Schulte, S., Muller, W. E., and Friedberg, K. D. (1995) In vitro and in vivo effects of lead on specific 3H-MK-801 binding to NMDA receptors in the brain of mice. NeuroToxicology 16, 309–318.PubMedGoogle Scholar
  32. 32.
    Guilarte, T. R., Miceli, R. C., and Jett, D. A. (1995) Biochemical evidence of an interaction of lead at the zinc allosteric sites of the NMDA receptor complex: effects of neuronal development. NeuroToxicology 16, 63–72.PubMedGoogle Scholar
  33. 33.
    Guilarte, T. R., Miceli, R. C., and Jett, D. A. (1994) Neurochemical aspects of hippocampal and cortical Pb2+ neurotoxicity. NeuroToxicology 15, 459–466.PubMedGoogle Scholar
  34. 34.
    Lasley, S. M. and Gilbert, M. E. (1999) Lead inhibits the rat N-methyl-d-aspar-tate receptor channel by binding to a site distinct from the zinc allosteric site. Toxicol. Appl. Pharmacol. 159, 224–233.PubMedCrossRefGoogle Scholar
  35. 35.
    Ma, T., Chen, H-H., Chang, H. L., Hume, A. S., and Ho, I. K. (1997) Effects of chronic lead exposure on [3H]MK-801 binding in the brain of rat. Toxicol. Lett. 92, 59–66.PubMedCrossRefGoogle Scholar
  36. 36.
    Guilarte, T. R., Miceli, R. C., Altmann, L., Weinsberg, F., Winneke, G., and Wiegand, H. (1993) Chronic prenatal and postnatal Pb2+ exposure increases [3H]MK-801 binding sites in adult rat forebrain. Eur. J. Pharmacol. 248, 273–275.PubMedGoogle Scholar
  37. 37.
    Lasley, S. M., Green, M. C., and Gilbert, M. E. (2001) Rat hippocampal NMDA receptor binding as a function of chronic lead exposure level. Neurotoxicol. Teratol. 23, 185–189.PubMedCrossRefGoogle Scholar
  38. 38.
    Chen, H-H., Ma, T., and Ho, I. K. (2001) Effects of developmental lead exposure on inhibitory avoidance learning and glutamate receptors in rats. Environ. Toxicol. Pharmacol. 9, 185–191.PubMedCrossRefGoogle Scholar
  39. 39.
    Cory-Slechta, D. A., Garcia-Osuna, M., and Greenamyre, J. T. (1997) Leadinduced changes in NMDA receptor complex binding: correlations with learning accuracy and with sensitivity to learning impairments caused by MK-801 and NMDA administration. Behav. Brain Res. 85, 161–174.PubMedCrossRefGoogle Scholar
  40. 40.
    Cory-Slechta, D. A., McCoy, L., and Richfield, E. K. (1997) Time course and regional basis of Pb-induced changes in MK-801 binding: Reversal by chronic treatment with the dopamine agonist apomorphine but not the D1 agonist SKF-82958. J. Neurochem. 68, 2012–2023.PubMedCrossRefGoogle Scholar
  41. 41.
    Cohn, J. and Cory-Slechta, D. A. (1994) Lead exposure potentiates the effects of NMDA on repeated learning. Neurotoxicol. Teratol. 16, 455–465.PubMedCrossRefGoogle Scholar
  42. 42.
    Cory-Slechta, D. A., Pokora, M. J., and Johnson, J. L. (1996) Postweaning lead exposure enhances the stimulus properties of N-methyl-d-aspartate: Possible dopaminergic involvement? NeuroToxicology 17, 509–522.PubMedGoogle Scholar
  43. 43.
    Cohn, J. and Cory-Slechta, D. A. (1993) Subsensitivity of lead-exposed rats to the accuracy-impairing and rate-altering effects of MK-801 on a multiple schedule of repeated learning and performance. Brain Res. 600, 208–218.PubMedCrossRefGoogle Scholar
  44. 44.
    Cory-Slechta, D. A. (1995) MK-801 subsensitivity following postweaning lead exposure. NeuroToxicology 16, 83–96.PubMedGoogle Scholar
  45. 45.
    Lasley, S. M. and Gilbert, M. E. (2000) Glutamatergic components underlying lead-induced impairments in hippocampal synaptic plasticity. NeuroToxicology 21, 1057–1068.PubMedGoogle Scholar
  46. 46.
    Markovac, J. and Goldstein, G. W. (1988) Picomolar concentrations of lead stimulate brain protein kinase C. Nature 334, 71–73.PubMedCrossRefGoogle Scholar
  47. 47.
    Markovac, J. and Goldstein, G. W. (1988) Lead activates protein kinase C in immature rat brain microvessels. Toxicol. Appl. Pharmacol. 96, 14–23.PubMedCrossRefGoogle Scholar
  48. 48.
    Sun, X., Tian, X., Tomsig, J. L., and Suszkiw, J. B. (1999) Analysis of differential effects of Pb2+ on protein kinase C isozymes. Toxicol. Appl. Pharmacol. 156, 40–45.PubMedCrossRefGoogle Scholar
  49. 49.
    Laterra, J., Bressler, J. P., Indurti, R. R., Belloni-Olivi, L., and Goldstein, G. W. (1992) Inhibition of astroglia-induced endothelial differentiation by inorganic lead: a role for protein kinase C. Proc. Natl. Acad. Sci. USA 89, 10,748–10,752.PubMedCrossRefGoogle Scholar
  50. 50.
    Lu, H., Guizzetti, M., and Costa, L. G (2001) Inorganic lead stimulates DNA synthesis in human astrocytoma cells: role of protein kinase C. J. Neurochem. 78, 590–599.PubMedCrossRefGoogle Scholar
  51. 51.
    Kim, K-A., Chakraborti, T., Goldstein, G. W., and Bressler, J. P. (2000) Immediate early gene expression in PC12 cells exposed to lead: requirement for protein kinase C. J. Neurochem. 74, 1140–1146.PubMedCrossRefGoogle Scholar
  52. 52.
    Nihei, M. K., McGlothan, J. L., Toscano, C. D., and Guilarte, T. R. (2001) Low level Pb2+ exposure affects hippocampal protein kinase Cγ gene and protein expression in rats. Neurosci. Lett. 298, 212–216.PubMedCrossRefGoogle Scholar
  53. 53.
    Chen, H-H., Ma, T., and Ho, I. K. (1999) Protein kinase C in rat brain is altered by developmental lead exposure. Neurochem. Res. 24, 415–421.PubMedCrossRefGoogle Scholar
  54. 54.
    Reinholz, M. M., Bertics, P. J., and Miletic, V. (1999) Chronic exposure to lead acetate affects the development of protein kinase C activity and the distribution of the PKCγ isozyme in the rat hippocampus. NeuroToxicology 20, 609–618.PubMedGoogle Scholar
  55. 55.
    Crumpton, T., Atkins, D. S., Zawia, N. H., and Barone, S. (2001) Lead exposure in pheochromocytoma (PC12) cells alters neural differentiation and Sp1 DNA-binding. NeuroToxicology 22, 49–62.PubMedCrossRefGoogle Scholar
  56. 56.
    Kern, M., Wisniewski, M., Cabell, L., and Audesirk, G. (2000) Inorganic lead and calcium interact positively in activation of calmodulin. NeuroToxicology 21, 353–364.PubMedGoogle Scholar
  57. 57.
    Kern, M. and Audesirk, G. (2000) Stimulatory and inhibitory effects of inorganic lead on calcineurin. Toxicology 150, 171–178.PubMedCrossRefGoogle Scholar
  58. 58.
    Ferguson, C., Kern, M., and Audesirk, G. (2000) Nanomolar concentrations of inorganic lead increase Ca2+ efflux and decrease intracellular free Ca2+ ion concentrations in cultured rat hippocampal neurons by a calmodulin-dependent mechanism. NeuroToxicology 21, 365–378.PubMedGoogle Scholar
  59. 59.
    Audesirk, T., Pedersen, C., Audesirk, G., and Kern, M. (1998) Low levels of inorganic lead noncompetitively inhibit μ-calpain. Toxicology 131, 169–174.PubMedCrossRefGoogle Scholar
  60. 60.
    Cline, H. T., Witte, S., and Jones, K. W. (1996) Low lead levels stunt neuronal growth in a reversible manner. Proc. Natl. Acad. Sci. USA 93, 9915–9920.PubMedCrossRefGoogle Scholar
  61. 61.
    Reuhl, K. R., Rice, D. C., Gilbert, S. G., and Mallett, J. (1989) Effects of chronic developmental lead exposure on monkey neuroanatomy: visual system. Toxicol. Appl. Pharmacol. 99, 501–509.PubMedCrossRefGoogle Scholar
  62. 62.
    Fox, D. A. and Sillman, A. J. (1979) Heavy metals affect rod, but not cone, photoreceptors. Science 206, 78–80.PubMedCrossRefGoogle Scholar
  63. 63.
    Fox, D. A., Campbell, M. L., and Blocker, Y. S. (1997) Functional alterations and apoptotic cell death in the retina following developmental or adult lead exposure. NeuroToxicology 18, 645–664.PubMedGoogle Scholar
  64. 64.
    Fox, D. A. and Srivastava, D. (1995) Molecular mechanism of the lead-induced inhibition of rod cGMP phosphodiesterase. Toxicol. Lett. 82–83, 263–270.PubMedCrossRefGoogle Scholar
  65. 65.
    Fox, D. A., He, L., Poblenz, A. T., Medrano, C. J., Blocker, Y. S., and Srivastava, D. (1998) Lead-induced alterations in retinal cGMP phosphodi-esterase trigger calcium overload, mitochondrial dysfunction and rod photore-ceptor apoptosis. Toxicol. Lett. 102–103, 359–361.PubMedCrossRefGoogle Scholar
  66. 66.
    He, L., Poblenz, A. T., Medrano, C. J., and Fox, D. A. (2000) Lead and calcium produce rod photoreceptor cell apoptosis by opening the mitochondrial permeability transition pore. J. Biol. Chem. 275, 12,175–12,184.PubMedCrossRefGoogle Scholar
  67. 67.
    Fox, D. A. and Farber, D. B. (1988) Rods are selectively altered by lead: I. Electrophysiology and biochemistry. Exp. Eye Res. 46, 597–611.PubMedCrossRefGoogle Scholar
  68. 68.
    Lilienthal, H., Lenaerts, C., Winneke, G., and Hennekes, R. (1988) Alteration of the visual evoked potential and the electroretinogram in lead-treated monkeys. Neurotoxicol. Teratol. 10, 417–422.PubMedCrossRefGoogle Scholar
  69. 69.
    Fox, D. A., Srivastava, D., and Hurwitz, R. L. (1994) Lead-induced alterations in rod-mediated visual functions and cGMP metabolism: new insights. NeuroToxicology 15, 503–512.PubMedGoogle Scholar
  70. 70.
    Fox, D. A., Rubinstein, S. D., and Hsu, P. (1991) Developmental lead exposure inhibits adult rat retinal, but not kidney, Na+,K+-ATPase. Toxicol. Appl. Pharmacol. 109, 482–493.PubMedCrossRefGoogle Scholar
  71. 71.
    Barnes, C. (1995) Involvement of LTP in memory: are we “searching under the street light?” Neuron 15, 751–754.PubMedCrossRefGoogle Scholar
  72. 72.
    Bliss, T. V. P. and Collingridge, G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39.PubMedCrossRefGoogle Scholar
  73. 73.
    Cain, D. P., Hargreaves, E. L., Boon, F., and Dennison, Z. (1993) An examination of the relations between hippocampal long-term potentiation, kindling, afterdischarge, and place learning in the water maze. Hippocampus 5, 153–163.CrossRefGoogle Scholar
  74. 74.
    Sutherland, R. J., Dringenberg, H. C., and Hoesing, J. M. (1993) Induction of long-term potentiation at perforant path dentate synapses does not affect place learning or memory. Hippocampus 3, 141–148.PubMedCrossRefGoogle Scholar
  75. 75.
    Hargreaves, E. L., Cain, D. P., and Vanderwolf, C H. (1990) Learning and behavioral long-term potentiation: importance of controlling for motor activity. J. Neurosci. 10, 1472–1478.PubMedGoogle Scholar
  76. 76.
    Gilbert, M. E., Mack, C. M., and Lasley, S. M. (1999) The influence of developmental period of lead exposure on long-term potentiation in the adult rat dentate gyrus in vivo. NeuroToxicology 20, 57–70.PubMedGoogle Scholar
  77. 77.
    Gilbert, M. E., Mack, C. M., and Lasley, S. M. (1996) Chronic developmental lead exposure increases threshold for long-term potentiation in the rat dentate gyrus in vivo. Brain Res. 736, 118–124.PubMedCrossRefGoogle Scholar
  78. 78.
    Grover, C. A. and Frye, G. D. (1996) Ethanol effects on synaptic neurotrans-mission and tetanus-induced synaptic plasticity in hippocampal slices of chronic in vivo lead-exposed adult rats. Brain Res. 734, 61–71.PubMedCrossRefGoogle Scholar
  79. 79.
    Lasley, S. M., Polan-Curtain, J., and Armstrong, D. L. (1993) Chronic exposure to environmental levels of lead impairs in vivo induction of long-term potentiation in rat hippocampal dentate. Brain Res. 614, 347–351.PubMedCrossRefGoogle Scholar
  80. 80.
    Ruan, D., Chen, J., Zhao, C., Xu, Y., Wang, M., and Zhao, W. (1998) Impairment of long-term potentiation and paired-pulse facilitation in rat hippocampal dentate gyrus following developmental lead exposure in vivo. Brain Res. 806, 196–201.PubMedCrossRefGoogle Scholar
  81. 81.
    Gilbert, M. E., Mack, C. M., and Lasley, S. M. (1999) Chronic developmental lead exposure and hippocampal long-term potentiation: biphasic dose-response relationship. NeuroToxicology 20, 71–82.PubMedGoogle Scholar
  82. 82.
    Gilbert, M. E. and Mack, C. M. (1998) Chronic developmental lead exposure accelerates decay of long-term potentiation in rat dentate gyrus in vivo. Brain Res. 789, 139–149.PubMedCrossRefGoogle Scholar
  83. 83.
    Nihei, M. K., Desmond, N. L., McGlothan, J. L., Kuhlmann, A. C., and Guilarte, T. R. (2000) N-Methyl-d-aspartate receptor subunit changes are associated with lead-induced deficits of long-term potentiation and spatial learning. Neuroscience 99, 233–242.PubMedCrossRefGoogle Scholar
  84. 84.
    Altmann, L., Weinsberg, F., Sveinsson, K., Lilienthal, H., Wiegand, H., and Winneke, G. (1993) Impairment of long-term potentiation and learning following chronic lead exposure. Toxicol. Lett. 66, 105–112.PubMedCrossRefGoogle Scholar
  85. 85.
    Zaiser, A. E. and Miletic, V. (1997) Prenatal and postnatal chronic exposure to low levels of inorganic lead attenuates long-term potentiation in the adult rat hippocampus in vivo. Neurosci. Lett. 239, 128–130.PubMedCrossRefGoogle Scholar
  86. 86.
    Xu, Y., Ruan, D., Wu, Y., et al. (1998) Nitric oxide affects LTP in area CA1 and CA3 of hippocampus in low-level lead-exposed rat. Neurotoxicol. Teratol. 20, 69–73.PubMedCrossRefGoogle Scholar
  87. 87.
    Gutowski, M., Altmann, L., Sveinsson, K., and Wiegand, H. (1998) Synaptic plasticity in the CA1 and CA3 hippocampal region of pre-and postnatally lead-exposed rats. Toxicol. Lett. 95, 195–203.PubMedCrossRefGoogle Scholar
  88. 88.
    Zhao, W., Ruan, D., Xu, Y., Chen, J., Wang, M., and Ge, S. (1999) The effects of chronic lead exposure on long-term depression in area CA1 and dentate gyrus of rat hippocampus in vitro. Brain Res. 818, 153–159.PubMedCrossRefGoogle Scholar
  89. 89.
    Zaiser, A. E. and Miletic, V. (2000) Differential effects of inorganic lead on hippocampal long-term potentiation in young rats in vivo. Brain Res. 876, 201–204.PubMedCrossRefGoogle Scholar
  90. 90.
    Cai, L., Ruan, D-Y., Xu, Y-Z., Liu, Z., Meng, X-M., and Dai, X-Q. (2001) Effects of lead exposure on long-term potentiation induced by 2-deoxy-D-glucose in area CA1 of rat hippocampus in vitro. Neurotoxicol. Teratol. 23, 481–487.PubMedCrossRefGoogle Scholar
  91. 91.
    Altmann, L., Gutowski, M., and Wiegand, H. (1994) Effects of maternal lead exposure on functional plasticity in the visual cortex and hippocampus of immature rats. Dev. Brain Res. 81, 50–56.CrossRefGoogle Scholar
  92. 92.
    Wilson, M. A., Johnston, M. V., Goldstein, G. W., and Blue, M. E. (2000) Neonatal lead exposure impairs development of rodent barrel field cortex. Proc. Natl. Acad. Sci. USA 97, 5540–5545.PubMedCrossRefGoogle Scholar
  93. 93.
    Rema, V. and Ebner, F. F. (1999) Effect of enriched environment rearing on impairments in cortical excitability and plasticity after prenatal alcohol exposure. J. Neurosci. 19, 10,993–11,006.PubMedGoogle Scholar
  94. 94.
    Gilbert, M. E. and Lasley, S. M. (2002) Long-term consequences of developmental exposure to lead or polychlorinated biphenyls: synaptic transmission and plasticity in the rodent CNS. Environ. Toxicol. Pharmacol. 12, 105–117.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Stephen M. Lasley
    • 1
  • Mary E. Gilbert
    • 2
  1. 1.Department of Biomedical and Therapeutic SciencesUniversity of Illinois College of MedicinePeoria
  2. 2.Neurotoxicology DivisionUS Environmental Protection AgencyResearch Triangle Park

Personalised recommendations