Skip to main content

Overview of Adeno-Associated Viral Vectors

  • Protocol
Gene Delivery to Mammalian Cells

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 246))

Abstract

The use of adeno-associated virus (AAV) as a gene transfer vector has been steadily increasing over the past several years. A AV vectors have been particularly useful for applications where sustained gene expression is required. Prolonged in vivo expression following A AV treatment has been seen in the liver (1,2), brain (3,4), skeletal muscle (5,6), lung (7,8), and hematopoietic stem cells (9,10) of animal models. Therapeutic benefit from A AV treatment has been shown in a number of preclinical models of disease, including animal models of coagulopathies (11,12), lysosomal storage diseases (13,14), vision defects (15,16), and amino acid disorders (17). Clinical trials using A AV for the treatment of hemophilia B have begun, and early reports from these trials have been promising (18). In this introductory chapter to AAV, we will provide a brief overview of the molecular biology of this virus, an overview of methods of vector production, and a brief summary of the use of alternate AAV serotypes. The following chapters will then focus on specific methods and techniques for AAV transduction of the organs listed previously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xiao, W., Berta, S. C., Lu, M. M., Moscioni, A. D., Tazelaar, J., and Wilson, J. M. (1998) Adeno-associated virus as a vector for liver-directed gene therapy. J. Virol. 72, 10222–10226.

    PubMed  CAS  Google Scholar 

  2. Snyder, R. O., Miao, C., Meuse, L., Tubb, J., Donahue, B. A., Lin, H. F., et al. (1999) Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors [see comments]. Nat. Med. 5, 64–70.

    Article  PubMed  CAS  Google Scholar 

  3. During, M. J., Samulski, R. J., Elsworth, J. D., Kaplitt, M. G., Leone, P., Xiao, X., et al. (1998) In vivo expression of therapeutic human genes for dopamine production in the caudates of MPTP-treated monkeys using an AAV vector. Gene Ther. 5, 820–827.

    Article  PubMed  CAS  Google Scholar 

  4. Chen, H., McCarty, D. M., Bruce, A. T., and Suzuki, K. (1998) Gene transfer and expression in oligodendrocytes under the control of myelin basic protein transcriptional control region mediated by adeno-associated virus. Gene Ther. 5, 50–58.

    Article  PubMed  Google Scholar 

  5. Bohl, D., Naffakh, N., and Heard, J. M. (1997) Long-term control of erythropoietin secretion by doxycycline in mice transplanted with engineered primary myoblasts [see comments]. Nat. Med. 3, 299–305.

    Article  PubMed  CAS  Google Scholar 

  6. Rivera, V. M., Ye, X., Courage, N. L., Sachar, J., Cerasoli, F., Jr., Wilson, J. M., and Gilman, M., et al. (1999) Long-term regulated expression of growth hormone in mice after intramuscular gene transfer. Proc. Natl. Acad. Sci. USA 96, 8657–8662.

    Article  PubMed  CAS  Google Scholar 

  7. Conrad, C. K., Allen, S. S., Afione, S. A., Reynolds, T. C., Beck, S. E., Fee-Maki, M., et al. (1996) Safety of single-dose administration of an adeno-associated virus (AAV)-CFTR vector in the primate lung. Gene Ther. 3, 658–668.

    PubMed  CAS  Google Scholar 

  8. Beck, S. E., Jones, L. A., Chesnut, K., Walsh, S. M., Reynolds, T. C., Carter, B. J., et al. (1999) Repeated delivery of adeno-associated virus vectors to the rabbit airway. J. Virol. 73, 9446–9455.

    PubMed  CAS  Google Scholar 

  9. Ponnazhagan, S., Mukherjee, P., Wang, X. S., Qing, K., Kube, D. M., Mah, C., et al. (1997) Adeno-associated virus type 2-mediated transduction in primary human bone marrow-derived CD34+ hematopoietic progenitor cells: donor variation and correlation of transgene expression with cellular differentiation. J. Virol. 71, 8262–8267.

    PubMed  CAS  Google Scholar 

  10. Tan, M., Qing, K., Zhou, S., Yoder, M. C., and Srivastava, A. (2001) Adeno-associated virus 2-mediated transduction and erythroid lineage-restricted long-term expression of the human beta-globin gene in hematopoietic cells from homozygous beta-thalassemic mice. Mol. Ther. 3, 940–946.

    Article  PubMed  CAS  Google Scholar 

  11. Xu, L., Daly, T., Gao, C., Flotte, T. R., Song, S., Byrne, B. J., et al. (2001) CMV-beta-actin promoter directs higher expression from an adeno-associated viral vector in the liver than the cytomegalovirus or elongation factor 1 alpha promoter and results in therapeutic levels of human factor X in mice. Hum. Gene Ther. 12, 563–573.

    Article  PubMed  CAS  Google Scholar 

  12. Chao, H., Monahan, P. E., Liu, Y., Samulski, R. J., and Walsh, C. E. (2001) Sustained and complete phenotype correction of Hemophilia B mice following intramuscular injection of AAV1 serotype vectors. Mol. Ther. 4, 217–222.

    Article  PubMed  CAS  Google Scholar 

  13. Jung, S. C., Han, I. P., Limaye, A., Xu, R., Gelderman, M. P., Zerfas, P., et al. (2001) Adeno-associated viral vector-mediated gene transfer results in long-term enzymatic and functional correction in multiple organs of Fabry mice. Proc. Natl. Acad. Sci. USA 98, 2676–2681.

    Article  PubMed  CAS  Google Scholar 

  14. Daly, T. M., Ohlemiller, K. K., Roberts, M. S., Vogler, C. A., and Sands, M. S. (2001) Prevention of systemic clinical disease in MPS VII mice following AAV-mediated neonatal gene transfer. Gene Ther. 8, 1291–1298.

    Article  PubMed  CAS  Google Scholar 

  15. Liang, F. Q., Dejneka, N. S., Cohen, D. R., Krasnoperova, N. V., Lem, J., Maguire, A. M., et al. (2001) AAV-mediated delivery of ciliary neurotrophic factor prolongs photoreceptor survival in the rhodopsin knockout mouse. Mol. Ther. 3, 241–248.

    Article  PubMed  CAS  Google Scholar 

  16. Acland, G. M., Aguirre, G. D., Ray, J., Zhang, Q., Aleman, T. S., Cideciyan, A. V., et al. (2001) Gene therapy restores vision in a canine model of childhood blindness. Nat. Genet. 28, 92–95.

    PubMed  CAS  Google Scholar 

  17. Chen, S. J., Tazelaar, J., Moscioni, A. D., and Wilson, J. M. (2000) In vivo selection of hepatocytes transduced with adeno-associated viral vectors. Mol. Ther. 1, 414–422.

    Article  PubMed  CAS  Google Scholar 

  18. Kay, M. A., Miao, C. H., Ohashi, K., Arruda, V., McClelland, A., Couto, L. B., et al. (2001) A proposed rAAV-Liver-directed clinical trial for hemophilia B. Mol Ther. 3, S33.

    Google Scholar 

  19. Berns, K. I. and Linden, R. M. (1995) The cryptic life style of adeno-associated virus. Bioessays. 17, 237–245.

    Article  PubMed  CAS  Google Scholar 

  20. Erles, K., Sebokova, P., and Schlehofer, J. R. (1999) Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV). J. Med. Virol. 59, 406–411.

    Article  PubMed  CAS  Google Scholar 

  21. Hermonat, P. L. and Muzyczka, N. (1984) Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc. Natl. Acad. Sci. USA 81, 6466–6470.

    Article  PubMed  CAS  Google Scholar 

  22. Xiao, X., Xiao, W., Li, J., and Samulski, R. J. (1997) A novel 165-base-pair terminal repeat sequence is the sole cis requirement for the adeno-associated virus life cycle. J. Virol. 71, 941–948.

    PubMed  CAS  Google Scholar 

  23. Samulski, R. J., Berns, K. I., Tan, M., and Muzyczka, N. (1982) Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc. Natl. Acad. Sci USA 79, 2077–2081.

    Article  PubMed  CAS  Google Scholar 

  24. Summerford, C., and Samulski, R. J. (1998) Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol. 72, 1438–1445.

    PubMed  CAS  Google Scholar 

  25. Summerford, C., Bartlett, J. S., and Samulski, R. J. (1999) AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection [see comments]. Nat. Med. 5, 78–82.

    Article  PubMed  CAS  Google Scholar 

  26. Qiu, J. and Brown, K. E. (1999) Integrin αVβ5 is not involved in adeno-associated virus type 2 (AAV2) infection. Virology 264, 436–440.

    Article  PubMed  CAS  Google Scholar 

  27. Ferrari, F. K., Samulski, T., Shenk, T., and Samulski, R. J. (1996) Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-as-sociated virus vectors. J. Virol. 70, 3227–3234.

    PubMed  CAS  Google Scholar 

  28. Russell, D. W. and Hirata, R. K. (1998) Human gene targeting by viral vectors. Nat. Genet. 18, 325–330.

    Article  PubMed  CAS  Google Scholar 

  29. Nakai, H., Iwaki, Y., Kay, M. A., and Couto, L. B. (1999) Isolation of recombinant adeno-associated virus vector-cellular DNA junctions from mouse liver. J. Virol. 73, 5438–5447.

    PubMed  CAS  Google Scholar 

  30. Miao, C. H., Nakai, H., Thompson, A. R., Storm, T. A., Chiu, W., Snyder, R. O., and Kay, M. A. (2000) Nonrandom transduction of recombinant adeno-associated virus vectors in mouse hepatocytes in vivo: cell cycling does not influence hepato-cyte transduction. J. Virol. 74, 3793–3803.

    Article  PubMed  CAS  Google Scholar 

  31. Samulski, R. J., Chang, L. S., and Shenk, T. (1987) A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J. Virol. 61, 3096–3101.

    PubMed  CAS  Google Scholar 

  32. Yan, Z., Zhang, Y., Duan, D., and Engelhardt, J. F. (2000) Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc. Natl. Acad. Sci. USA 97, 6716–6721.

    Article  PubMed  CAS  Google Scholar 

  33. Duan, D., Yue, Y., and Engelhardt, J. F. (2001) Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol. Ther. 4, 383–391.

    Article  PubMed  CAS  Google Scholar 

  34. Xiao, X., Li, J., and Samulski, R. J. (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72, 2224–2232.

    PubMed  CAS  Google Scholar 

  35. Grimm, D., Kern, A., Rittner, K., and Kleinschmidt, J. A. (1998) Novel tools for production and purification of recombinant adeno-associated viral vectors. Hum. Gene Ther. 9, 2745–2760.

    Article  PubMed  CAS  Google Scholar 

  36. Collaco, R. F., Cao, X., and Trempe, J. P. (1999) A helper virus-free packaging system for recombinant adeno-associated virus vectors. Gene 238, 397–405.

    Article  PubMed  CAS  Google Scholar 

  37. Liu, X., Voulgaropoulou, F., Chen, R., Johnson, P. R., and Clark, K. R. (2000) Selective Rep-Cap gene amplification as a mechanism for high-titer recombinant AAV production from stable cell lines. Mol. Ther. 2, 394–403.

    Article  PubMed  CAS  Google Scholar 

  38. Chadeuf, G., Favre, D., Tessier, J., Provost, N., Nony, P., Kleinschmidt, J., et al. (2000) Efficient recombinant adeno-associated virus production by a stable rep-cap HeLa cell line correlates with adenovirus-induced amplification of the integrated rep-cap genome. J. Gene Med. 2, 260–268.

    Article  PubMed  CAS  Google Scholar 

  39. Zolotukhin, S., Byrne, B. J., Mason, E., Zolotukhin, I., Potter, M., Chesnut, K., et al. (1999) Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 6, 973–985.

    Article  PubMed  CAS  Google Scholar 

  40. Moskalenko, M., Chen, L., van Roey, M., Donahue, B. A., Snyder, R. O., McArthur, J. G., and Patel, S. D. (2000) Epitope mapping of human anti-adeno-associated virus type 2 neutralizing antibodies: implications for gene therapy and virus structure. J. Virol. 74, 1761–1766.

    Article  PubMed  CAS  Google Scholar 

  41. Halbert, C. L., Rutledge, E. A., Allen, J. M., Russell, D. W., and Miller, A. D. (2000) Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J. Virol. 74, 1524–1532.

    Article  PubMed  CAS  Google Scholar 

  42. Manning, W. C., Zhou, S., Bland, M. P., Escobedo, J. A., and Dwarki, V. (1998) Transient immunosuppression allows transgene expression following readministration of adeno-associated viral vectors. Hum. Gene Ther. 9, 477–485.

    Article  PubMed  CAS  Google Scholar 

  43. Halbert, C. L., Standaert, T. A., Wilson, C. B., and Miller, A. D. (1998) Successful readministration of adeno-associated virus vectors to the mouse lung requires transient immunosuppression during the initial exposure. J. Virol. 72, 9795–9805.

    PubMed  CAS  Google Scholar 

  44. Rutledge, E. A., Halbert, C. L., and Russell, D. W. (1998) Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J. Virol. 72, 309–319.

    PubMed  CAS  Google Scholar 

  45. Hildinger, M., Auricchio, A., Gao, G., Wang, L., Chirmule, N., and Wilson, J. M. (2001) Hybrid vectors based on adeno-associated virus serotypes 2 and 5 for muscle-directed gene transfer. J. Virol. 75, 6199–6203.

    Article  PubMed  CAS  Google Scholar 

  46. Chao, H., Liu, Y., Rabinowitz, J., Li, C., Samulski, R. J., and Walsh, C. E. (2000). Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol. Ther. 2, 619–623.

    Article  PubMed  CAS  Google Scholar 

  47. Kaludov, N., Brown, K. E., Walters, R. W., Zabner, J., and Chiorini, J. A. (2001) Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J. Virol. 75, 6884–6893.

    Article  PubMed  CAS  Google Scholar 

  48. Walters, R. W., Yi, S. M., Keshavjee, S., Brown, K. E., Welsh, M. J., Chiorini, J. A., and Zabner, J. (2001) Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J. Biol. Chem. 276, 20610–20616.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Daly, T.M. (2004). Overview of Adeno-Associated Viral Vectors. In: Heiser, W.C. (eds) Gene Delivery to Mammalian Cells. Methods in Molecular Biology™, vol 246. Humana Press. https://doi.org/10.1385/1-59259-650-9:157

Download citation

  • DOI: https://doi.org/10.1385/1-59259-650-9:157

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-095-3

  • Online ISBN: 978-1-59259-650-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics