Dilivery of Genes to Hematopoietic Stem Cells

  • Masafumi Onodera
Part of the Methods in Molecular Biology™ book series (MIMB, volume 246)


Bone marrow hematopoiesis is maintained by hematopoietic stem cells (HSC) (1). Because of their unique features to self-renew and differentiate along all lineages of hematopoietic cells, even a single HSC can completely reconstitute bone marrow hematopoiesis of irradiated recipients (2). Therefore, HSCs are considered to be the ideal target cell population in gene-therapy fields for genetic disorders that are susceptible to bone marrow transplantation (3). However, because most HSCs are quiescent, it is difficult to transduce them using retroviral vectors (4). Furthermore, retroviral vectors, especially Moloney murine leukemia virus (MMLV)-based retroviral vectors that have been commonly used in gene-therapy clinical trials, are very susceptible to de novo methylation in immature cells such as embryonic stem (ES) cells, embryonal carcinoma cells (EC), and HSCs, resulting in shut off/silencing of the transgene expression in vivo (5). This is another obstacle for successful gene delivery into HSCs.


Packaging Cell Line Lineage Negative Cell Total Bone Marrow Staining Medium Stem Cell Gene Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Till, J. E., McCulloch, E. A., and Siminovitch, L. (1964) A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cell. Proc. Natl. Acad. Sci. USA 51, 29–36.PubMedCrossRefGoogle Scholar
  2. 2.
    Osawa, M., Hanada, K., Hamada, H. and Nakauchi H. (1996) Long-term lympho-hematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245.PubMedCrossRefGoogle Scholar
  3. 3.
    Mulligan, R. C. (1993) The basic science of gene therapy. Science 260, 926–932.PubMedCrossRefGoogle Scholar
  4. 4.
    Hoogerbrugge, P. M., van Beusechem, V. W., Fischer, A., Debree, M., le Deist, F., Perignon, J. L., et al. (1996) Bone marrow gene transfer in three patients with adenosine deaminase deficiency. Gene Then 3, 179–183.Google Scholar
  5. 5.
    Wang, L., Robbins, P. B., Carbonaro, D. A., and Kohn, D. B. (1998) High-resolution analysis of cytosine methylation in the 5′ long terminal repeat of retroviral vectors. Hum. Gene Then 9, 2321–2330.CrossRefGoogle Scholar
  6. 6.
    Onodera, M., Nelson, D. M., Yachie, A., Jagadeesh, G. J., Bunnell, B. A., Morgan, R. A., and Blaese, R. M. (1998) Development of improved adenosine deaminase retroviral vectors. J. Virol. 72, 1769–1774.PubMedGoogle Scholar
  7. 7.
    Halene, S., Wang, L., Cooper, R. M., Bockstoce, D. C, Robbins, P. B., and Kohn, D. B. (1999) Improved expression in hematopoietic and lymphoid cells in mice after transplantation of bone marrow transduced with a modified retroviral vector. Blood 94: 3349–3357.PubMedGoogle Scholar
  8. 8.
    Tahara-Hanaoka, S., Sudo, K., Ema, H., Miyoshi, H., and Nakauchi, H. (2002) Lentiviral vector-mediated transduction of murine CD34(-) hematopoietic stem cells. Exp. Hematol. 30, 11–17.PubMedCrossRefGoogle Scholar
  9. 9.
    Markowitz, D., Goff, S., and Bank, A. (1988) A safe packaging line for gene transfer: separating viral genes on two different plasmids. J. Virol. 62, 1120–1124.PubMedGoogle Scholar
  10. 10.
    Pear, W S., Nolan, G P., Scott, M. L., and Baltimore, D. (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396.PubMedCrossRefGoogle Scholar
  11. 11.
    Miller, A. D. and Buttimore, C. (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell Biol. 6, 2895–2902.PubMedGoogle Scholar
  12. 12.
    Burns, J. C, Friedmann, T., Driever, W., Burrascano, M., and Yee, J. K. (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmam-malian cells. Proc. Natl. Acad. Sci. USA 90, 8759–8760.CrossRefGoogle Scholar
  13. 13.
    Orlic, D., Girard, L. J., Anderson, S. M., Pyle, L. C, Yoder, M. C, Broxmeyer, H. E., and Bodine, D. M. (1998) Identification of human and mouse hematopoietic stem cell populations expressing high levels of mRNA encoding retrovirus receptors. Blood 91, 3247–3254.PubMedGoogle Scholar
  14. 14.
    Yang, Y, Vanin, E. F., Whitt, M. A., Fornerod, M., Zwart, R., Schneiderman, R. D., and Grosveld, G (1995) Inducible, high-level production of infectious murine leukemia retroviral vector particles pseudotyped with vesicular stomatitis virus G envelope protein. Hum. Gene Ther. 6, 1203–1213.PubMedCrossRefGoogle Scholar
  15. 15.
    Dexter, T. M., Allen T., and Lajtha L. G (1997) Conditions controlling the proliferation of haemapoietic stem cells in vitro. J. Cell Physiol. 91, 335–344.CrossRefGoogle Scholar
  16. 16.
    Ogawa, M., Matsuzaki, Y, Nishikawa, S., Hayashi, S., Kunisada, T., Sudo, T., et al. (1991) Expression and function of c-kit in hemopoietic progenitor cells. J. Exp. Med. 174, 63–71.PubMedCrossRefGoogle Scholar
  17. 17.
    Miller, A. D., Garcia, J. V., von Suhr, N, Lynch, C. M., Wilson, C, and Eiden, M. V. (1991) Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J. Virol. 65, 2220–2224.PubMedGoogle Scholar
  18. 18.
    Cosset, F. L., Takeuchi, Y., Battini, J. L., Weiss, R. A., and Collins, M. K. (1995) High-titer packaging cells producing recombinant retroviruses resistant to human serum. J. Virol. 69, 7430–7436.PubMedGoogle Scholar
  19. 19.
    Sato, T., Laver, J. H., and Ogawa, M. (1999) Reversible expression of CD34 by murine hematopoietic stem cells. Blood 94, 2548–2554.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Masafumi Onodera
    • 1
  1. 1.Department of Hematology, Institute of Clinical MedicineUniversity of TsukubaTsukuba, IbarakiJapan

Personalised recommendations