Delivery of Adenoviral DNA to Mouse Liver

  • Sheila Connelly
  • Christine Mech
Part of the Methods in Molecular Biology™ book series (MIMB, volume 246)

Abstract

The liver represents a major target organ for gene delivery owing to its high biosynthetic capacity and access to the bloodstream. Adenoviral vectors are highly efficient gene-transfer vehicles, making them among the most promising systems for in vivo gene transfer to the liver. Following intravenous administration of adenoviral vectors to a variety of mammalian models, including mice, dogs, and monkeys, hepatocytes are efficiently transduced (1). Several delivery methods to the liver have been described, including portal vein (2, 3, 4), hepatic artery (3,5), and peripheral vein infusions (6). This chapter describes the simple, nonsurgical method of intravenous (iv) administration of adenoviral vectors in mice, and an immunohistochemical method to qualitatively evaluate liver transduction efficiency following delivery of an adenoviral vector encoding a β-galactosidase (β-gal) marker gene. Additionally, several alternative methods to verify efficient liver transduction are introduced.

Keywords

Toxicity Peroxide Glycerol Attenuation Cage 

References

  1. 1.
    Connelly, S. (1999) Adenoviral vectors for liver-directed gene therapy. Curt Opin. Mol. Ther. 1, 565–572.Google Scholar
  2. 2.
    Vrancken Peeters, M. J., Perkins, A. L., and Kay, M. A. (1996) Method for multiple portal vein infusions in mice: quantitation of adenovirus-mediated hepatic gene transfer. Biotechniques 20, 278–285.PubMedGoogle Scholar
  3. 3.
    Gerolami, R., Cardoso, J., Bralet, M. P., Cuenod, C. A., Clement, O., Tran, P. L., and Brechot, C. (1998) Enhanced in vivo adenovirus-mediated gene transfer to rat hepatocarcinomas by selective administration into the hepatic artery. Gene Ther. 5, 896–904.PubMedCrossRefGoogle Scholar
  4. 4.
    Cichon, G., Schmidt, H. H., Benhidjeb, T., Loser, P., Ziemer, S., Haas, R., et al. (1999) Intravenous administration of recombinant adenoviruses causes thrombocytopenia, anemia and erythroblastosis in rabbits. J. Gene Med. 1, 360–371.PubMedCrossRefGoogle Scholar
  5. 5.
    Maron, D. J., Tada, H., Moscioni, A. D., Tazelaar, J., Fraker, D. L., Wilson, J. M., and Spitz, F.R. (2001) Intra-arterial delivery of a recombinant adenovirus does not increase gene transfer to tumor cells in a rat model of metastatic colorectal carcinoma. Mol. Ther. 4, 29–35.PubMedCrossRefGoogle Scholar
  6. 6.
    Smith, T. A., Mehaffey, M. G., Kayda, D. B., Saunders, J. M., Yei, S., Trapnell, B. C., et al. (1993) Adenovirus mediated expression of therapeutic plasma levels of human factor IX in mice. Nat. Genet. 5, 397–402.PubMedCrossRefGoogle Scholar
  7. 7.
    Yang, Y., Nunes, F. A., Berencsi, K., Furth, E. E., Gonczol, E., and Wilson, J. M. (1994) Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc. Natl. Acad. Sci. USA 91, 4407–4411.PubMedCrossRefGoogle Scholar
  8. 8.
    Yang, Y, Jooss, K. U., Su, Q., Ertl, H. C, and Wilson, J. M. (1996) Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo. Gene Ther. 3, 137–144.PubMedGoogle Scholar
  9. 9.
    Yang, Y. and Wilson, J. M. (1995) Clearance of adenovirus-infected hepatocytes by MHC class I-restricted CD4+ CTLs in vivo. J. Immunol. 155, 2564–2570.PubMedGoogle Scholar
  10. 10.
    Berkner, K. L. (1988) Development of adenovirus vectors for the expression of heterologous genes. Biotechniques 6, 616–629.PubMedCrossRefGoogle Scholar
  11. 11.
    Gorziglia, M. I., Kadan, M. J., Yei, S., Lim, J., Lee, G. M., Luthra, R., and Trapnell, B. C. (1996) Elimination of both E1 and E2 from adenovirus vectors further improves prospects for in vivo human gene therapy. J. Virol. 70, 4173–4178.PubMedGoogle Scholar
  12. 12.
    Gorziglia, M. I., Lapcevich, C., Roy, S., Kang, Q., Kadan, M., Wu, V., et al. (1999) Generation of an adenovirus vector lacking E1, E2a, E3, and all of E4 except open reading frame 3. J. Virol. 73, 6048–6055.PubMedGoogle Scholar
  13. 13.
    Morral, N., O’Neal, W., Zhou, H., Langston, C., and Beaudet, A. (1997) Immune responses to reporter proteins and high viral dose limit duration of expression with adenoviral vectors: comparison of E2a wild type and E2a deleted vectors. Hum. Gene Ther. 8, 1275–1286.PubMedCrossRefGoogle Scholar
  14. 14.
    Amalfitano, A. and Chamberlain, J. S. (1997) Isolation and characterization of packaging cell lines that coexpress the adenovirus E1, DNA polymerase, and preterminal proteins: implications for gene therapy. Gene Ther. 4, 258–263.PubMedCrossRefGoogle Scholar
  15. 15.
    Armentano, D., Zabner, J., Sacks, C., Sookdeo, C. C., Smith, M. P., St George, J. A., et al. (1997) Effect of the E4 region on the persistence of transgene expression from adenovirus vectors. J. Virol. 71, 2408–2416.PubMedGoogle Scholar
  16. 16.
    Andrews, J. L., Kadan, M. J., Gorziglia, M. I., Kaleko, M., and Connelly, S. (2001) Generation and characterization of E1/E2a/E3/E4-deficient adenoviral vectors encoding human factor VIII. Mol. Ther. 3, 329–336.PubMedCrossRefGoogle Scholar
  17. 17.
    Brough, D. E., Hsu, C., Kulesa, V. A., Lee, G. M., Cantolupo, L. J., Lizonova, A., and Kovesdi, I. (1997) Activation of transgene expression by early region 4 is responsible for a high level of persistent transgene expression from adenovirus vectors in vivo. J. Virol. 71, 9206–9213.PubMedGoogle Scholar
  18. 18.
    Lusky, M., Grave, L., Dieterle, A., Dreyer, D., Christ, M., Ziller, C., et al. (1999) Regulation of adenovirus-mediated transgene expression by the viral E4 gene products: requirement for E4 ORF3. J. Virol. 73, 8308–8319.PubMedGoogle Scholar
  19. 19.
    Christ, M., Louis, B., Stoeckel, F., Dieterle, A., Grave, L., Dreyer, D., et al. (2000) Modulation of the inflammatory properties and hepatotoxicity of recombinant adenovirus vectors by the viral E4 gene products. Hum. Gene Ther. 11, 415–427.PubMedCrossRefGoogle Scholar
  20. 20.
    Morral, N., O’Neal, W., Rice, K., Leland, M., Kaplan, J., Piedra, P. A., et al. (1999) Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc. Natl. Acad. Sci. USA 96, 12816–12821.PubMedCrossRefGoogle Scholar
  21. 21.
    Sandig, V., Youil, R., Bett, A. J., Franlin, L. L., Oshima, M., Maione, D., et al. (2000) Optimization of the helper-dependent adenovirus system for production and potency in vivo. Proc. Natl. Acad. Sci. USA 97, 1002–1007.PubMedCrossRefGoogle Scholar
  22. 22.
    Maione, D., Wiznerowicz, M., Delmastro, P., Cortese, R., Ciliberto, G., La Monica, N., and Savino, R. (2000) Prolonged expression and effective readministration of erythropoietin delivered with a fully deleted adenoviral vector. Hum. Gene Ther. 11, 859–868.PubMedCrossRefGoogle Scholar
  23. 23.
    Balague, C., Zhou, J., Dai, Y., Alemany, R., Josephs, S. F., Andreason, G., et al. (2000) Sustained high-level expression of full-length human factor VIII and restoration of clotting activity in hemophilic mice using a minimal adenovirus vector. Blood 95, 820–828.PubMedGoogle Scholar
  24. 24.
    Kochanek, S., Schiedner, G., and Volpers, C. (2001) High-capacity ‘gutless’ adenoviral vectors. Curr. Opin. Mol. Ther. 3, 454–463.PubMedGoogle Scholar
  25. 25.
    Reddy, P. S., Sakhuja, K., Ganesh, S., Yang, L., Kayda, D., Brann, T., et al. (2002) Sustained human factor VIII expression in hemophilia a mice following systemic delivery of a gutless adenoviral vector. Mol. Ther. 5, 63–73.PubMedCrossRefGoogle Scholar
  26. 26.
    Gao, G. P., Yang, Y., and Wilson, J. M. (1996) Biology of adenovirus vectors with E1 and E4 deletions for liver-directed gene therapy. J. Virol. 70, 8934–8943.PubMedGoogle Scholar
  27. 27.
    Tripathy, S. K., Svensson, E. C., Black, H. B., Goldwasser, E., Margalith, M., Hobart, P. M., and Leiden, J. M. (1996) Long-term expression of erythropoietin in the systemic circulation of mice after intramuscular injection of a plasmid DNA vector. Proc. Natl. Acad. Sci. USA 93, 10876–10880.PubMedCrossRefGoogle Scholar
  28. 28.
    Loser, P., Jennings, G. S., Strauss, M., and Sandig, V. (1998) Reactivation of the previously silenced cytomegalovirus major immediate-early promoter in the mouse liver: involvement of NFkappaB. J. Virol. 72, 180–190.PubMedGoogle Scholar
  29. 29.
    De Geest, B., Van Linthout, S., Lox, M., Collen, D., and Holvoet, P. (2000) Sustained expression of human apolipoprotein A-I after adenoviral gene transfer in C57BL/6 mice: role of apolipoprotein A-I promoter, apolipoprotein A-I introns, and human apolipoprotein E enhancer. Hum. Gene Ther. 11, 101–112.PubMedCrossRefGoogle Scholar
  30. 30.
    Connelly, S., Gardner, J. M., McClelland, A., and Kaleko, M. (1996) High-level tissue-specific expression of functional human factor VIII in mice. Hum. Gene Ther. 7, 183–195.PubMedCrossRefGoogle Scholar
  31. 31.
    Pastore, L., Morral, N., Zhou, H., Garcia, R., Parks, R. J., Kochanek, S., et al. (1999) Use of a liver-specific promoter reduces immune response to the transgene in adenoviral vectors. Hum. Gene Ther. 10, 1773–1781.PubMedCrossRefGoogle Scholar
  32. 32.
    Bristol, J. A., Gallo-Penn, A., Andrews, J., Idamakanti, N., Kaleko, M., and Connelly, S. (2001) Adenovirus-mediated factor VIII gene expression results in attenuated anti-factor VIII-specific immunity in hemophilia A mice compared with factor VIII protein infusion. Hum. Gene Ther. 12, 1651–1661.PubMedCrossRefGoogle Scholar
  33. 33.
    Jaffe, H. A., Danel, C., Longenecker, G., Metzger, M., Setoguchi, Y., Rosenfeld, M. A., et al. (1992) Adenovirus-mediated in vivo gene transfer and expression in normal rat liver. Nat. Genet. 1, 372–378.PubMedCrossRefGoogle Scholar
  34. 34.
    Hackett, N. R., El Sawy, T., Lee, L. Y., Silva, I., O’Leary, J., Rosengart, T. K., and Crystal, R. G. (2000) Use of quantitative TaqMan real-time PCR to track the time-dependent distribution of gene transfer vectors in vivo. Mol. Ther. 2, 649–656.PubMedCrossRefGoogle Scholar
  35. 35.
    Kay, M. A., Landen, C. N., Rothenberg, S. R., Taylor, L. A., Leland, F., Wiehle, S., et al. (1994) In vivo hepatic gene therapy: complete albeit transient correction of factor IX deficiency in hemophilia B dogs. Proc. Natl. Acad. Sci. USA 91, 2353–2357.PubMedCrossRefGoogle Scholar
  36. 36.
    Connelly, S., Mount, J., Mauser, A., Gardner, J. M., Kaleko, M., McClelland, A., and Lothrop, C. D., Jr. (1996) Complete short-term correction of canine hemophilia A by in vivo gene therapy. Blood 88, 3846–3853.PubMedGoogle Scholar
  37. 37.
    Fang, B., Wang, H., Gordon, G., Bellinger, D. A., Read, M. S., Brinkhous, K. M., et al. (1996) Lack of persistence of E1-recombinant adenoviral vectors containing a temperature-sensitive E2A mutation in immunocompetent mice and hemophilia B dogs. Gene Ther. 3, 217–222.PubMedGoogle Scholar
  38. 38.
    Brann, T., Kayda, D., Lyons, R. M., Shirley, P., Roy, S., Kaleko, M., and Smith, T. (1999) Adenoviral vector-mediated expression of physiologic levels of human factor VIII in nonhuman primates. Hum. Gene Ther. 10, 2999–3011.PubMedCrossRefGoogle Scholar
  39. 39.
    Andrews, J. L., Shirley, P. S., Iverson, W. O., Sherer, A. D., Markovits, J. E., King, L., et al. (2002) Evaluation of the duration of human factor VIII expression in non-human primates following systemic delivery of an adenoviral vector. Hum. Gene Ther. 13, 1331–1336.PubMedCrossRefGoogle Scholar
  40. 40.
    Michou, A. I., Santoro, L., Christ, M., Julliard, V., Pavirani, A., and Mehtali, M. (1997) Adenovirus-mediated gene transfer: influence of transgene, mouse strain and type of immune response on persistence of transgene expression. Gene Ther. 4, 473–482.PubMedCrossRefGoogle Scholar
  41. 41.
    Barr, D., Tubb, J., Ferguson, D., Scaria, A., Lieber, A., Wilson, C., et al. (1995) Strain related variations in adenovirally mediated transgene expression from mouse hepatocytes in vivo: comparisons between immunocompetent and immunodeficient inbred strains. Gene Ther. 2, 151–155.PubMedGoogle Scholar
  42. 42.
    Fields, P. A., Armstrong, E., Hagstrom, J. N., Arruda, V. R., Murphy, M. L., Farrell, J. P., et al. (2001) Intravenous administration of an E1/E3-deleted adenoviral vector induces tolerance to factor IX in C57BL/6 mice. Gene Ther. 8, 354–361.PubMedCrossRefGoogle Scholar
  43. 43.
    Wen, X. Y., Bai, Y., and Stewart, A. K. (2001) Adenovirus-mediated human endostatin gene delivery demonstrates strain-specific antitumor activity and acute dose-dependent toxicity in mice. Hum. Gene Ther. 12, 347–358.PubMedCrossRefGoogle Scholar
  44. 44.
    Smith, T., Idamaknati, N., Kylefjord, H., Rollence, M., King, L., Kaloss, M., et al. (2002) In vivo hepatic adenoviral gene delivery occurs in a CAR independent fashion. Mol. Ther. 5, 770–779.PubMedCrossRefGoogle Scholar
  45. 45.
    Bristol, J. A., Shirley, P., Idamakanti, N., Kaleko, M., and Connelly, S. (2000) In vivo dose threshold effect of adenovirus-mediated factor VIII gene therapy in hemophiliac mice. Mol. Ther. 2, 223–232.PubMedCrossRefGoogle Scholar
  46. 46.
    Connelly, S., Gardner, J. M., Lyons, R. M., McClelland, A., and Kaleko, M. (1996) Sustained expression of therapeutic levels of human factor VIII in mice. Blood 87, 4671–4677.PubMedGoogle Scholar
  47. 47.
    Tao, N., Gao, G. P., Parr, M., Johnston, J., Baradet, T., Wilson, J. M., et al. (2001) Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol. Ther. 3, 28–35.PubMedCrossRefGoogle Scholar
  48. 48.
    Mittereder, N., March, K. L., and Trapnell, B. C. (1996) Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J. Virol. 70, 7498–7509.PubMedGoogle Scholar
  49. 49.
    Connelly, S., Smith, T. A., Dhir, G., Gardner, J. M., Mehaffey, M. G., Zaret, K. S., et al. (1995) In vivo gene delivery and expression of physiological levels of functional human factor VIII in mice. Hum. Gene Ther. 6, 185–193.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Sheila Connelly
    • 1
  • Christine Mech
    • 2
  1. 1.Advanced Vision Therapies Inc.Rockville
  2. 2.Genetic Therapy Inc.Gaithersburg

Personalised recommendations