AAV-Mediated Gene Transfer to Mouse Lungs

  • Christine L. Halbert
  • A. Dusty  Miller
Part of the Methods in Molecular Biology™ book series (MIMB, volume 246)


The ability of adeno-associated viral (AAV) vectors to promote persistent gene expression in nondividing cells in multiple somatic tissues of animals (1, 2, 3, 4) makes them excellent tools for gene transfer. One tissue of interest for gene transfer is the lung epithelium, which is afflicted in cystic fibrosis (CF). However, although initial animal studies done with vectors based on A AV type 2 have demonstrated transduction in multiple cells types in the lung, the rates were modest in alveolar cells and much lower rates in airway epitheila and required high particle numbers (5, 6, 7). In contrast, an AAV6 encapsidated vector showed preferential transduction of epithelial cells in large and small airways (8) at rates that exceeded the 5% efficiency rate predicted to have a therapeutic value for CF gene therapy (9). In fact, recent studies using vectors based on other A AV types showed that types 1–6 have different tissue tropisms (10, 11, 12, 13, 14, 15), and that types 5 and 6 are more efficient than type 2 in lung epithelium (8,14). In mouse lung, an AAV2 vector gave modest transduction rates.


Mouse Lung Nitro Blue Tetrazolium Transduction Efficiency Alveolar Cell AAV2 Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Flotte, T. R., Afione, S. A., Conrad, C., McGrath, S. A., Solow, R., Oka, H., et al. (1993) Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc. Natl. Acad. Sci. USA USA 90, 10613–10617.CrossRefGoogle Scholar
  2. 2.
    Herzog, R. W., Yang, E. Y., Couto, L. B., Hagstrom, J. N., Elwell, D., Fields, P. A., et al. (1999) Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat. Med. 5, 56–63.PubMedCrossRefGoogle Scholar
  3. 3.
    Muzyczka, N. (1992) Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr. Topics Microbiol. Immunol. 158, 97–129.Google Scholar
  4. 4.
    Snyder, R. O., Miao, C. H., Patijn, G. A, Spratt, S. K., Danos, O., Nagy, D., et al. (1997) Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant A AV vectors. Nat. Genet. 16, 270–276.PubMedCrossRefGoogle Scholar
  5. 5.
    Fisher, K. J., Gao, G., Weitzman, M. D., DeMatteo, R., Burda, J. F., and Wilson, J. M. (1996) Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J. Virol. 70, 520–532PubMedGoogle Scholar
  6. 6.
    Halbert, C. L. et al. (1997) Transduction by adeno-associated virus vectors in the rabbit airway: efficiency, persistence, and readministration. J. Virol. 71, 5932–5941.PubMedGoogle Scholar
  7. 7.
    Halbert, C.L., Standaert, T.A., Wilson, C.B., and Miller, A.D. (1998). Successful readministration of AAV vectors to the mouse lung requires transient immunosup-pression during the initial exposure. J. Virol. 72, 9795–9805.PubMedGoogle Scholar
  8. 8.
    Halbert, C. L., Allen, J. M., and Miller, A. D. (2001) Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J. Virol. 75, 6615–6624.PubMedCrossRefGoogle Scholar
  9. 9.
    Johnson, L. G., Olsen, J. C., Sarkadi, B., Moore, K. L., Swanstrom, R., and Boucher, R.C. (1992) Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nature Genet. 2, 21–25.PubMedCrossRefGoogle Scholar
  10. 10.
    Chao, H., Liu, Y., Rabinowitz, J., Li, C., Samuloki, R. S., and Walsh, C. E. (2000) Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol. Ther. 2, 619–623.PubMedCrossRefGoogle Scholar
  11. 11.
    Davidson, B. L., Stein, C. S., Heth, J. A., et al. (2000) Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc. Natl. Acad. Sci. USA 97, 3428–3432.PubMedCrossRefGoogle Scholar
  12. 12.
    Halbert, C.L., Rutledge, E. A., Allen, J. M., Russell, D. W., and Miller, A. D. (2000) Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J. Virol. 74, 1524–1532.PubMedCrossRefGoogle Scholar
  13. 13.
    Hildinger, M., Auricchio, A., Gao, G., Wang, L., Chirmule, N., and Wilson, S.M. (2001) Hybrid vectors based on adeno-associated virus serotypes 2 and 5 for muscle-directed Gene Transfer. J. Virol. 75, 6199–6203.PubMedCrossRefGoogle Scholar
  14. 14.
    Zabner, J., Seiler, M., Walters, R., et al. (2000) Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer. J. Virol. 74, 3852–3858.PubMedCrossRefGoogle Scholar
  15. 15.
    Xiao, W., Chirmule, N., Berta, S. C., McCullough, B., Gao, G., and Wilson, J. M. (1999) Gene therapy vectors based on adeno-associated virus type 1. J. Virol. 73, 3994–4003.PubMedGoogle Scholar
  16. 16.
    Chiorini, J. A., Yang, L., Liu, Y., Safer, B., and Kotin, R. M. (1997) Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J. Virol. 86, 6823–6833.Google Scholar
  17. 17.
    Chiorini, J. A., F. Kim, L. Yang, and Kotin, R. M. (1999) Cloning and characterization of adeno-associated virus type 5. J. Virol. 73, 1309–1319.PubMedGoogle Scholar
  18. 18.
    Rutledge, E. A., Halbert, C. L., and Russell, D. W. (1998) Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than A AV type 2. J. Virol. 72:309–319.PubMedGoogle Scholar
  19. 19.
    Zeitlin, P. L., Chu, S., Conrad, C., McVeigh, U., Ferguson, K., Flotte, T. R., and Guggino, W. B. (1995) Alveolar stem cell transduction by an adeno-associated viral vector. Gene Ther. 2, 623–663PubMedGoogle Scholar
  20. 20.
    Zolotukhin, S., Byrne, J., Mason, E., Zolotukhin, I., Potter, M., Chesnut, K. C., et al. (1999) Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 6, 973–985.PubMedCrossRefGoogle Scholar
  21. 21.
    Boissy, R. and Astell, C. R. (1985) An Escherichia coli recBCsbcBrecF host permits the deletion-resistant propagation of plasmid clones containing the 5’-terminal palindrome of minute virus of mice. Gene 35:179–185.PubMedCrossRefGoogle Scholar
  22. 22.
    Sambrook, J., Fritsch, E. F., and Maniatis T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  23. 23.
    Allen, J. M., Halbert, C. L., and Miller, A. D. (2000) Improved adeno-associated virus vector production with transfection of a single helper adenovirus gene, E4orf6. Mol. Ther. 1, 88–95.PubMedCrossRefGoogle Scholar
  24. 24.
    Graham, F. L. and Smiley, J. (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–72.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Christine L. Halbert
    • 1
  • A. Dusty  Miller
    • 1
  1. 1.Molecular MedicineFred Hutchinson Cancer Research CenterSeattle

Personalised recommendations