DNA Delivery to Cells in Culture Using PNA Clamps

  • Todd D. Giorgio
  • Shelby K. Wyatt
Part of the Methods in Molecular Biology™ book series (MIMB, volume 245)

Abstract

Peptide nucleic acid (PNA) is a DNA mimic in which the deoxyribose phosphate backbone has been replaced by N-(2-aminoethyl) glycine linkages. PNAs, first described by Nielsen et al. in 1991 (1), possess a number of useful properties including rapid and high-affinity binding to DNA, RNA, and PNA, resistance to degradation by nucleases and proteases and poor affinity for proteins that normally bind nucleic acids. For these reasons and others, PNA has been proposed for use as a therapeutic agent in controlling gene expression through either antisense or antigene activity.

Keywords

Formaldehyde Chloroform Sodium Chloride Oligomer Trypsin 

References

  1. 1.
    Nielsen, P. E., Egholm, E., Berg, R. H., and Buchardt, O. (1991) Sequence selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500.PubMedCrossRefGoogle Scholar
  2. 2.
    Scarfi, S., Giovine, M., Gasparini, A., Damonte, G., Millo, E., Pozzolini, M., and Benatti, U. (1999) Modified peptide nucleic acids are internalized in mouse macrophages RAW 264.7 and inhibit inducible nitric oxide synthase. FEBS Lett. 451, 264–268.PubMedCrossRefGoogle Scholar
  3. 3.
    Pardridge, W. M., Boado, R. J., and Kang, Y. S. (1995) Vector-mediated delivery of a polyamide “peptide” nucleic acid analogue through the blood-brain barrier in vivo. Proc. Natl. Acad. Sci. USA 92, 5592–5596.PubMedCrossRefGoogle Scholar
  4. 4.
    Nielsen, P. E. (2000) Peptide nucleic acids: on the road to new gene therapeutic drugs. Pharmacol. Toxicol. 86, 3–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Liang, K. W., Hoffman, E. P., and Huang, L. (2000) Targeted delivery of plasmid DNA to myogenic cells via transferrin-conjugated peptide nucleic acid. Mol. Ther. 1, 236–243.PubMedCrossRefGoogle Scholar
  6. 6.
    Brandén, L. J., Christensson, B., and Smith, C. I. E. (2001) In vivo nuclear delivery of oligonucleotides via hybridizing bifunctional peptides. Gene Ther. 8, 84–87.PubMedCrossRefGoogle Scholar
  7. 7.
    Wilson, G. L., Dean, B. S., Wang, G., and Dean, D. A. (1999) Nuclear import of plasmid DNA in digitonin-permeabilized cells required both cytoplasmic factors and specific DNA sequences. J. Biol. Chem. 274, 22025–22032.PubMedCrossRefGoogle Scholar
  8. 8.
    Zelphati, O., Liang, X., Hobart, P., and Felgner, P. L. (1999) Gene chemistry: functionally and conformationally intact fluorescent plasmid DNA. Human Gene Ther. 10, 15–24.CrossRefGoogle Scholar
  9. 9.
    Nastruzzi, C., Cortesi, R., Esposito, E., Gambari, R., Borgatti, M., Bianchi, N., et al. (2000) Liposomes as carriers for DNA-PNA hybrids. J. Control. Rel. 68, 237–249.CrossRefGoogle Scholar
  10. 10.
    Doyle, D. F., Braasch, D. A., Simmons, C. G., Janowski, B. A., and Corey, D. R. (2001) Inhibition of gene expression inside cells by peptide nucleic acids: effects of mRNA target sequence, mismatched bases and PNA length. Biochem. 40, 53–64.CrossRefGoogle Scholar
  11. 11.
    Norton, J. C., Piatyszek, M. A., Wright, W. E., Shay, J. W., and Corey, D. R. (1996) Inhibition of human telomerase activity by peptide nucleic acids. Nat. Biotech. 14, 615–619.CrossRefGoogle Scholar
  12. 12.
    Herbert, B., Pitts, A. E., Baker, S. I., Hamilton, S. E., Wright, W. E., Shay, J. W., and Corey, D. R. (1999) Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc. Natl. Acad. Sci. USA 96, 14267–14281.CrossRefGoogle Scholar
  13. 13.
    Godbey, W. T., Wu, K. K., and Mikos, A. G. (1999) Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc. Natl. Acad. Sci. USA 96, 5177–5181.PubMedCrossRefGoogle Scholar
  14. 14.
    Wightman, L., Kircheis, R., Rössler, V., Carotta, S., Ruzicka, R., Kursa, M., and Wagner, E. (2001) Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene. Med. 3, 362–372.PubMedCrossRefGoogle Scholar
  15. 15.
    Pooga, M., Soomets, U., Hällbrink, M., Valkna, A., Saar, K., Rezaei, K., et al. (1998) Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotech. 16, 857–861.CrossRefGoogle Scholar
  16. 16.
    Simmons, C. G., Pitts, A. E., Mayfield, L. D., Shay, J. W., and Corey, D. R. (1997) Synthesis and membrane permeability of PNA-peptide conjugates. Bioorg. Med. Che. Lett. 7, 3001–3006.CrossRefGoogle Scholar
  17. 17.
    Shammas, M. A., Simmons, C. G., Corey, D. R., and Shmookler-Reis, R. J. (1999) Telomerase inhibition by peptide nucleic acids reverses “immortality” of transformed human cells. Oncogene 18, 6191–6200.PubMedCrossRefGoogle Scholar
  18. 18.
    James, M. B. and Giorgio, T. D. (2000) Nuclear-associated plasmid, but not cell-associated plasmid, is correlated with transgene expression in cultured mammalian cells. Mol. Ther. 1, 339–346.PubMedCrossRefGoogle Scholar
  19. 19.
    Tseng, W. C., Haselton, F. R., and Giorgio, T. D. (1997) Transfection by cationic liposomes using simultaneous single cell measurements of plasmid delivery and transgene expression. J. Biol. Chem. 272, 25641–25647.PubMedCrossRefGoogle Scholar
  20. 20.
    Tseng, W., Purvis, N. B., Haselton, F. R., and Giorgio, T. D. (1996) Cationic liposomal delivery of plasmid to endothelial cells measured by quantitative flow cytometry. Biotech. Bioeng. 50, 548–554.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Todd D. Giorgio
    • 1
  • Shelby K. Wyatt
    • 2
  1. 1.Departments of Biomedical Engineering and Chemical EngineeringVanderbilt UniversityNashville
  2. 2.Department of Biomedical EngineeringVanderbilt UniversityNashville

Personalised recommendations