Skip to main content

Enantioseparation in Capillary Chromatography and Capillary Electrochromatography Using Polysaccharide-Type Chiral Stationary Phases

  • Protocol
  • 731 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 243))

Abstract

Polysaccharide esters and phenylcarbamates represent powerful chiral stationary phases (CSPs) for enantioseparations in high-performance liquid chromatography (HPLC) (1). Within the last few years, these materials have been increasingly used for enantioseparations in capillary liquid chromatography (CLC) and capillary electrochromatograpy (CEC) (2,3).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Okamoto, Y. and Yashima, E. (1998) Polysaccharide derivatives for separation of enantiomers. Angew. Chem. 37, 1021–1043.

    CAS  Google Scholar 

  2. Chankvetadze, B. and Blaschke, G. (2000) Enantioseparations using capillary electromigration techniques in nonaqueous buffers. Electrophoresis 21, 4159–4178.

    Article  PubMed  CAS  Google Scholar 

  3. Fanali, S., Catarcini, P., Blaschke, G., and Chankvetadze, B. (2001) Enantioseparations by capillary electrochromatography. Electrophoresis 22, 3131–3151.

    Article  PubMed  CAS  Google Scholar 

  4. Peters, E. C., Lewandowski, K., Petro, M., Svec, F., and Frechet, J. M. (1998) Chiral electrochromatography with a “moulded” rigid monolithic capillary column. Anal. Commun. 35, 83–86.

    Article  CAS  Google Scholar 

  5. Lämmerhofer, M., Svec, F., Frechet, J. M. J., and Lindner, W. (2000) Chiral monolithic columns for enantioselective capillary electrochromatography prepared by copolymerization of a monomer with quinidine functionality. 2. Effect of chromatographic conditions on the chiral separations. Anal. Chem. 72, 4623–4628.

    Article  PubMed  Google Scholar 

  6. Koide, T. and Ueno, K. (2000) Enantiomer separations of cationic and neutral compounds by capillary electrochromatography with monolithic chiral stationary phases of β-cyclodextrin bounded negative polyacrylamide gels. J. Chromatogr. A 893, 177–187.

    Article  PubMed  CAS  Google Scholar 

  7. Chankvetadze, B., Kartozia, I., Breitkreutz, J., et al. (2001) Comparative capillary chromatographic and capillary electrochromatographic enantioseparations using cellulose tris(3,5-dichlorophenylcarbamate) as chiral stationary phase. J. Sep. Sci. 24, 251–257.

    Article  CAS  Google Scholar 

  8. Mayer, S., Briand, X., and Francotte, E. (2000) Separation of enantiomers by packed capillary electrochromatography on a cellulose-based stationary phase. J. Chromatogr. A 875, 331–339.

    Article  PubMed  CAS  Google Scholar 

  9. Otsuka, K., Mikami, M., and Terabe, S. (2000) Enantiomer separation by capillary electrochromatography using chiral stationary phases. J. Chromatogr. A 887, 457–463.

    Article  PubMed  CAS  Google Scholar 

  10. Krause, K., Chankvetadze, B., Okamoto, Y., and Blaschke, G. (1999) Chiral separations in nonaqueous capillary electrochromatography using helically chiral poly (diphenyl-2-pyridylmethyl methacrylate) as chiral stationary phase. Electrophoresis 20, 2772–2778.

    Article  PubMed  CAS  Google Scholar 

  11. Francotte, E. and Jung, M. (1996) Enantiomer separation by open-tubular liquid chromatography and electrochromatography in cellulose-coated capillaries. Chromatographia 42, 521–527.

    Article  CAS  Google Scholar 

  12. Wakita, T., Chankvetadze, B., Yamamoto, C., and Okamoto, Y. (2001) Chromatographic enantioseparations on capillary column containing covalently bound cellulose (3,5-dichlorophenylcarbamate) as chiral stationary phase. J. Sep. Sci. 25, 167–169.

    Article  Google Scholar 

  13. Gübitz, G. and Schmid, M. G. (2000) Chiral separation by capillary electrochromatography. Enantiomer 5, 5–11.

    PubMed  Google Scholar 

  14. Lämmerhofer, M., Svec, F., Frechet, J. M., and Lindner, W. (2000) Separation of enantiomers by capillary electrochromatography. Trends Anal. Chem. 19, 676–698.

    Article  Google Scholar 

  15. Okamoto, Y., Kawashima, M., Yamamoto, K., and Hatada, K. (1984) Chromatographic resolution. 6. Useful chiral packing materials for high-performance liquid chromatographic resolution. Cellulose triacetate and tribenzoate coated on macroporous silica gel. Chem. Lett. 739-742.

    Google Scholar 

  16. Ichida, A., Shibata, T., Okamoto, I., Yuki, Y., Namikoshi, H., and Toga, Y. (1984) Resolution of enantiomers by HPLC on cellulose derivatives. Chromatographia 19, 280–284.

    Article  CAS  Google Scholar 

  17. Okamoto, Y., Aburatani, R., Miura, S., and Hatada, K. (1987) Chiral stationary phases for HPLC: cellulose tris(3,5-dimethylphenylcarbamate) and tris(3,5-dichlorophenylcarbamate) chemically bonded to silica gel. J. Liq. Chromatogr. 10, 1613–1628.

    Article  CAS  Google Scholar 

  18. Kimata, K., Tsuboi, R., Hosoya, K., and Tanaka, N. (1993) Chemically bonded chiral stationary phase prepared by the polymerization of cellulose p-vinylbenzoate. Anal. Methods Instrum. 1, 23–29.

    CAS  Google Scholar 

  19. Oliveras, L., Lopez, P., Minguillon, C., and Franco, P. (1995) Chiral chromatographic discrimination ability of a cellulose 3,5-dimethylphenylcarbamate/10-undecenoate mixed derivative fixed on several chromatographic matrices. J. Liq. Chromatogr. 18, 1521–1532.

    Article  Google Scholar 

  20. Kubota, T., Kusano, T., Yamamoto, C., Yashima, E., and Okamoto, Y. (2001) Cellulose 3,5-dimethylphenylcarbamate immobilized onto silica gel via copolymerization with a vinyl monomer and its chiral recognition ability as a chiral stationary phase for HPLC. Chem. Lett. 724–725.

    Google Scholar 

  21. Francotte, E. and Huynh, D. (2002) Immobilized halogenylphenylcarbamate derivatives of celulose as novel stationary phases for enantioselective drug analysis. J. Biomed. Pharm. Anal. 27, 421–429.

    Article  CAS  Google Scholar 

  22. Enomoto, N., Furukawa, S., Ogasawara, Y., et al. (1996) Preparation of silica gelbonded amylose through enzyme-catalyzed polymerization and chiral recognition ability of its phenylcarbamate derivative in HPLC. Anal. Chem. 68, 2798–2804.

    Article  PubMed  CAS  Google Scholar 

  23. Girod, M., Chankvetadze, B., Okamoto, Y., and Blaschke, G. (2001) Highly efficient enantioseparations in non-aqueous capillary electrochromatography using cellulose tris(3,5-dichlorophenylcarbamate) as chiral stationary phase. J. Sep. Sci. 24, 27–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.,Totowa, NJ

About this protocol

Cite this protocol

Chankvetadze, B. (2004). Enantioseparation in Capillary Chromatography and Capillary Electrochromatography Using Polysaccharide-Type Chiral Stationary Phases. In: Gübitz, G., Schmid, M.G. (eds) Chiral Separations. Methods in Molecular Biology, vol 243. Humana Press. https://doi.org/10.1385/1-59259-648-7:387

Download citation

  • DOI: https://doi.org/10.1385/1-59259-648-7:387

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-150-9

  • Online ISBN: 978-1-59259-648-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics