Skip to main content

Chiral Separation Principles

An Introduction

  • Protocol
Chiral Separations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 243))

  • 915 Accesses

Abstract

The development of methods for chiral separation on an analytical as well as on a preparative scale has attracted great attention during the past two decades. Chromatographic methods such as gas chromatography (GC) (1), high-performance liquid chromatography (HPLC) (26), supercritical fluid chromatography (SFC) (79), and thin-layer chromatography (TLC) (1013) have been developed using different chiral separation principles. More recently, capillary electrophoresis (CE) (1421) and capillary electrochromatography (CEC) (2225) have been shown to be powerful alternatives to chromatographic methods. Several separation principles successfully used in HPLC have been transferred to CE and CEC. For the separation of enantiomers on a preparative scale, LC has become increasingly attractive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schurig, V. (2001) Separation of enantiomers by gas chromatography. J. Chromatogr. A 906, 275–299.

    Article  PubMed  CAS  Google Scholar 

  2. Gübitz, G. (1990) Separation of drug enantiomers by HPLC using chiral stationary phases—a selective review. Chromatographia 30, 555–564.

    Article  Google Scholar 

  3. Bojarski, J. (1997) Recent progress in chromatographic enantioseparations. Chem. Anal. 42, 139–185.

    CAS  Google Scholar 

  4. Gasparrini, F., Misiti, D., and Villani, C. (2001) HPLC chiral stationary phases based on low-molecular-mass selectors. J. Chromatogr. A 906, 35–50.

    Article  PubMed  CAS  Google Scholar 

  5. Subramanian, G. (ed.) (1994) A Practical Approach to Chiral Separations by Liquid Chromatography. Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  6. Ahuja, S. (ed.) (1997) Chiral Separations—Applications and Technology. American Chemical Society, Washington, DC.

    Google Scholar 

  7. Terfloth, G. (2001) Enantioseparations in super-and subcritical fluid chromatography. J. Chromatogr. A 906, 301–307.

    Article  PubMed  CAS  Google Scholar 

  8. Williams, K. L. and Sander, L. C. (1997) Enantiomer separations on chiral stationary phases in supercritical fluid chromatography. J. Chromatogr. A 785, 149–158.

    Article  CAS  Google Scholar 

  9. Petersson, P. and Markides, K. E. (1994) Chiral separations performed by supercritical fluid chromatography. J. Chromatogr. A 666, 381–394.

    Article  CAS  Google Scholar 

  10. Günther, K. and Möller, K. (eds.) (1996) Handbook of Thin-Layer Chromatography, 2nd Ed. (Sherma, J. and Fried, B., ed.), Marcel Dekker, New York, pp. 621–682.

    Google Scholar 

  11. Duncan, J. D. (1990) Chiral separations—a comparison of HPLC and TLC. J. Liq. Chromatogr. 13, 2737–2755.

    Article  CAS  Google Scholar 

  12. Lepri, L. (1997) Enantiomer separation by thin-layer chromatography. J. Planar. Chromatogr.-Modern TLC 10, 320–331.

    CAS  Google Scholar 

  13. Aboul-Enein, H. Y., El-Awady, M. I., Heard, C. M., and Nicholls, P. J. (1999) Application of thin-layer chromatography in enantiomeric chiral analysis—an overview. Biomed. Chromatogr. 13, 531–537.

    Article  PubMed  CAS  Google Scholar 

  14. Nishi, H. and Terabe, S. (1995) Optical resolution drugs by capillary electrophoretic techniques. J. Chromatogr. A 694, 245–276.

    Article  CAS  Google Scholar 

  15. Fanali, S. (1996) Identification of chiral drug isomers by capillary electrophoresis. J. Chromatogr. A 735, 77–121.

    Article  PubMed  CAS  Google Scholar 

  16. Chankvetadze, B. (1997) Separation selectivity in chiral capillary electrophoresis with charged selectors. J. Chromatogr. A 792, 269–295.

    Article  CAS  Google Scholar 

  17. Fanali, S. (1997) Controlling enantioselectivity in chiral capillary electrophoresis with inclusion-complexation. J. Chromatogr. A 792, 227–267.

    Article  PubMed  CAS  Google Scholar 

  18. Gübitz, G. and Schmid, M. G. (1997) Chiral separation principles in capillary electrophoresis. J. Chromatogr. A 792, 179–225.

    Article  Google Scholar 

  19. Fanali, S. (2000) Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors. J. Chromatogr. A 875, 89–122.

    Article  PubMed  CAS  Google Scholar 

  20. Verleysen, K. and Sandra, P. (1998) Separation of chiral compounds by capillary-electrophoresis. Electrophoresis 19, 2798–2833.

    Article  PubMed  CAS  Google Scholar 

  21. Gübitz, G. and Schmid, M. G. (2000) Recent progress in chiral separation principles in capillary electrophoresis. Electrophoresis 21, 4112–4135.

    Article  PubMed  Google Scholar 

  22. Gübitz, G. and Schmid, M. G. (2000) Chiral separation by capillary electrochromatography (minireview). Enantiomer 5, 5–11.

    PubMed  Google Scholar 

  23. Wistuba, D. and Schurig, V. (2000) Enantiomer separation of chiral pharmaceuticals by capillary electrochromatography. J. Chromatogr. A 875, 255–276.

    Article  PubMed  CAS  Google Scholar 

  24. Dermaux, A. and Sandra, P. (1999) Applications of capillary electrochromatography. Electrophoresis 20, 3027–3065.

    Article  PubMed  CAS  Google Scholar 

  25. Wistuba, D. and Schurig, V. (2000) Recent progress in enantiomer separation by CEC. Electrophoresis 21, 4036–4058.

    Google Scholar 

  26. Hjertén, S., Liao, J.-L., and Zhang, R. (1989) High-performance liquid chromatography on continuous polymer beds. J. Chromatogr. A 473, 273–275.

    Article  Google Scholar 

  27. Subramanian, G. (ed.) (2000) Chiral Separation Techniques: A Practical Approach. Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  28. Chankvetadze, B. (ed.) (2001) Chiral Separations. Elsevier Science, Amsterdam.

    Google Scholar 

  29. Bhushan, R. and Joshi, S. (1993) Resolution of enantiomers of amino-acids by HPLC. Biomed. Chromatogr. 7, 235–250.

    Article  PubMed  CAS  Google Scholar 

  30. Zhou, Y., Luan, P., Liu, L., and Sun, Z. P. (1994) Chiral derivatizing reagents for drug enantiomers bearing hydroxyl-groups. J. Chromatogr. B 659, 109–126.

    Article  CAS  Google Scholar 

  31. Bovingdon, M. E. and Webster, R. A. (1994) Derivatization reactions for neurotransmitters and their automation. J. Chromatogr. B 659, 157–183.

    Article  CAS  Google Scholar 

  32. Campíns-Falcó, P., Sevillano-Cabeza, A., and Molina-Legua, C. (1994) Amphetamine and methamphetamine determinations in biological samples by high-performance liquid-chromatography. J. Liq. Chromatogr. 17, 731–747.

    Article  Google Scholar 

  33. Görög, S. and Gazdag, M. (1994) Enantiomeric derivatization for biomedical chromatography. J. Chromatogr. B 659, 51–84.

    Article  Google Scholar 

  34. Srinivas, N. R., Shyu, W. C., and Barbhaiya, R. H. (1995) Gaschromatographic determination of enantiomers as diastereomers following pre-column derivatization and applications to pharmacokinetic studies: a review. Biomed. Chromatogr. 9, 1–9

    Article  PubMed  CAS  Google Scholar 

  35. Toyo’oka, T. (1996) Recent progress in liquid chromatographic enantioseparation based upon diastereomer formation with fluorescent chiral derivatization reagents. Biomed. Chromatogr. 10, 265–277.

    Article  CAS  Google Scholar 

  36. Dalgliesh, C. E. (1952) The optical resolution of aromatic amino-acids on paper chromatograms. J. Chem. Soc. 137, 3940–3942.

    Article  Google Scholar 

  37. Lipkowitz, K. B. (2001) Atomistic modelling of enantioselection in chromatography. J. Chromatogr. A 906, 417–442.

    Article  PubMed  CAS  Google Scholar 

  38. Gil-Av, E., Feibush, B., and Charles-Sigler, R. (1966) Separation of enantiomers by gas liquid chromatography with an optically active stationary phase. Tetrahedron Lett. 1009–1015.

    Google Scholar 

  39. Frank, H., Nicholson, G. J., and Bayer, E. (1978) Chiral polysiloxanes for resolution of optical antipodes. Angew. Chem. Int. Ed. Engl. 17, 363–365.

    Article  Google Scholar 

  40. Schurig, V. (2001) Separation of enantiomers by gas chromatography. J. Chromatogr. A 906, 275–299.

    Article  PubMed  CAS  Google Scholar 

  41. Dobashi, A., Dobashi, Y., and Hara, S. (1986) Enantioselectivity of hydrogenbond association in liquid-solid chromatography. J. Liq. Chromatogr. 9, 243–267.

    Article  CAS  Google Scholar 

  42. Dobashi, Y. and Hara, S. (1985) Direct resolution of enantiomers by liquid-chromatography with the novel chiral stationary phase derived from (R,R)-tartramide. Tetrahedron Lett. 26, 4217–4220.

    Article  CAS  Google Scholar 

  43. Dobashi, Y. and Hara, S. (1987) A chiral stationary phase derived from (R,R)-tartramide with broadened scope of application to the liquid-chromatographic resolution of enantiomers. J. Org. Chem. 52, 2490–2496.

    Article  CAS  Google Scholar 

  44. Pirkle, W. H., House, D. W., and Finn, J. M. (1980) Broad-spectrum resolution of optical isomers using chiral high-performance liquid-chromatographic bonded phases. J. Chromatogr. 192, 143–158.

    Article  CAS  Google Scholar 

  45. Pirkle, W. H., Finn, J. M., Schreiner, J. L., and Hamper, B. C. J. (1981) A widely useful chiral stationary phase for the high-performance liquid-chromatography separation of enantiomers. J. Am. Chem. Soc. 103, 3964–3966.

    Article  CAS  Google Scholar 

  46. Pirkle, W. H., Welch, C. J., and Hyun, M. H. (1983) A chiral recognition model for the chromatographic resolution of n-acylated 1-aryl-1-aminoalkanes. J. Org. Chem. 48, 5022–5026.

    Article  CAS  Google Scholar 

  47. Welch, C. J. (1994) Evolution of chiral stationary phase design in the Pirkle laboratories. J. Chromatogr. A 666, 3–26.

    Article  CAS  Google Scholar 

  48. Hyun, M. H. and Min, C. S. (1998) Chiral recognition mechnism for the resolution of enantiomers on a highly effective HPLC chiral stationary phase derived from (R)-4-hydroxyphenylglycine. Chirality 10, 592–599.

    Article  CAS  Google Scholar 

  49. Lin, C.-E. and Lin, C.-H. (1994) Enantiomer separation of amino-acids on a chiral stationary-phase derived from L-alanyl-disubstituted and pyrrolidinyl-disubstituted cyanuric chloride. J. Chromatogr. A 676, 303–309.

    Article  CAS  Google Scholar 

  50. Gasparrini, F., Misiti, D., Pierini, M., and Villani, C. (1996) Enantioselective chromatography on brush-type chiral stationary phases containing totally synthetic selectors. Theoretical aspects and practical applications. J. Chromatogr. A 724, 79–90.

    Article  CAS  Google Scholar 

  51. Uray, G., Maier, N. M., Niederreiter, K. S., and Spitaler, M. M. (1998) Diphenyl-ethanediamine derivatives as chiral selectors VIII. Influence of the second amido function on the high-performance liquid chromatographic enantioseparation characteristics of (N-3,5-dinitrobenzoyl)-diphenylethanediamine based chiral stationary phases. J. Chromatogr. A 799, 67–81.

    Article  CAS  Google Scholar 

  52. Wolf, C., Spence, P. L., Pirkle, W. H., Derrico, E. M., Cavender, D. M., and Rozing, G. P. (1997) Enantioseparations by electrochromatography with packed capillaries. J. Chromatogr. A 782, 175–179.

    Article  CAS  Google Scholar 

  53. Wolf, C., Spence, P. L., Pirkle, W. H., Cavender, D. M., and Derrico, E. M. (2000) Investigation of capillary electrochromatography with brush-type chiral stationary phases. Electrophoresis 21, 917–924.

    Article  PubMed  CAS  Google Scholar 

  54. Lämmerhofer, M. and Lindner, W. (1996) Quinine and quinidine derivatives as chiral selectors I. Brush type chiral stationary phases for high-performance liquid chromatography based on cinchonan carbamates and their application as chiral anion exchangers. J. Chromatogr. A 741, 33–48.

    Article  Google Scholar 

  55. Lämmerhofer, M. and Lindner, W. (1998) High-efficiency chiral separations of N-derivatized amino acids by packed-capillary electrochromatography with a quinine-based chiral anion-exchange type stationary phase. J. Chromatogr. A 829, 115–125.

    Article  Google Scholar 

  56. Tobler, E. M., Lämmerhofer, M., and Lindner, W. (2000) Investigation of an enantioselective non-aqueous capillary electrochromatography system applied to the separation of chiral acids. J. Chromatogr. A 875, 341–352.

    Article  PubMed  CAS  Google Scholar 

  57. Pettersson, C. and Schill, G. (1981) Separation of enantiomeric amines by ion-pair chromatography. J. Chromatogr. 204, 179–183.

    Article  PubMed  CAS  Google Scholar 

  58. Salva, P. S., Hite, J. G., and Henkel, J. G. (1982) The preparative scale reverse phase HPLC separation of epimeric alkaloids using camphorsulfonic acid as an ion pairing reagent. J. Liq. Chromatogr. 5, 305–312.

    Article  CAS  Google Scholar 

  59. Pettersson, C. and Karlsson, A. (1992) Separation of enantiomeric amines and acids using chiral ion-pair chromatography on porous graphitic carbon. Chirality 4, 323–332.

    Article  Google Scholar 

  60. Pettersson, C. and Gioeli, C. (1993) Chiral separation of amines using reversed-phased ion-pair chromatography. Chirality 5, 241–245.

    Article  CAS  Google Scholar 

  61. Pettersson, C. and No, K. (1983) Chiral resolution of carboxylic and sulfonic acids by ion-pair chromatography. J. Chromatogr. 282, 671–684.

    Article  CAS  Google Scholar 

  62. Pettersson, C. (1984) Chromatographic separation of enantiomers of acids with quinine as chiral counter ion. J. Chromatogr. 316, 553–567.

    Article  CAS  Google Scholar 

  63. Bjornsdottir, I., Hansen, S. H., and Terabe, S. (1996) Chiral separation in nonaqueous media by capillary electrophoresis using the ion-pair principle. J. Chromatogr. A 745, 37–44.

    Article  CAS  Google Scholar 

  64. Stalcup, A. M. and Gahm, K. H. (1996) Quinine as a chiral additive in nonaqueous capillary zone electrophoresis. J. Microcol. Separ. 8, 145–150.

    Article  CAS  Google Scholar 

  65. Piette, V., Lämmerhofer, M., Lindner, W., and Crommen, J. (1999) Enantiomeric separation of N-protected amino acids by non-aqueous capillary electrophoresis using quinine or tert-butyl carbamoylated quinine as chiral additive. Chirality 11, 622–630.

    Article  PubMed  CAS  Google Scholar 

  66. Terabe, S., Ichikawa, K. T., Otsuka, K., and Tsuchiya, A. (1984) Electrokinetic separations with micellar solutions and open-tubular capillaries. Anal. Chem. 56, 111–113.

    Article  CAS  Google Scholar 

  67. Cammileri, P. (1997) Chiral surfactants in micellar electrokinetic capillary chromatography. Electrophoresis 18, 2322–2330.

    Article  Google Scholar 

  68. Palmer, C. P. and Tanaka, N. (1997) Selectivity of polymeric and polymer-supported pseudo-stationary phases in micellar electrokinetic chromatography. J. Chromatogr. A 792, 105–124.

    Article  CAS  Google Scholar 

  69. Otsuka, K. and Terabe, S. (2000) Enantiomer separation of drugs by micellar electrokinetic chromatography using chiral surfactants. J. Chromatogr. A 875, 163–178.

    Article  PubMed  CAS  Google Scholar 

  70. Shamsi, S. A. and Warner, I. M. (1997) Monomeric and polymeric chiral surfactants as pseudo-stationary phases for chiral separations. Electrophoresis 18, 853–872.

    Article  PubMed  CAS  Google Scholar 

  71. Davankov, V. A. and Rogozhin, S. V. (1971) Ligand chromatography as a novel method for the investigation of mixed complexes: stereoselective effects in α-amino acid copper(II) complexes. J. Chromatogr. 60, 280–283.

    Article  PubMed  CAS  Google Scholar 

  72. Gübitz, G., Jellenz, W., Löffler, G., and Santi, W. (1979) Chemically bonded chiral stationary phases for the separation of racemates by HPLC. J. High Resol. Chromatogr. Chromatogr. Commun. 2, 145–146.

    Article  Google Scholar 

  73. Gübitz, G., Jellenz, W., and Santi, W. (1981) Separation of the optical isomers of amino acids by ligand-exchange chromatography using chemically bonded phases. J. Chromatogr. 203, 377–384.

    Article  Google Scholar 

  74. Gübitz, G., Juffmann, W., and Jellenz, W. (1982) Direct separation of amino acid enantiomers by high performance ligand-exchange chromatography on chemically bonded chiral phases. Chromatographia 16, 103–106.

    Article  Google Scholar 

  75. Gübitz, G. (1986) Direct separation of enantiomers by high performance ligand-exchange chromatography on chemically bonded chiral phases. J. Liq. Chromatogr. 9, 519–535.

    Article  Google Scholar 

  76. Brückner, H. (1987) Enantiomeric resolution of N-methyl-α-amino acids by ligand-exchange chromatography. Chromatographia 24, 725–738.

    Article  Google Scholar 

  77. Gübitz, G. and Mihellyes, S. (1984) Direct separation of 2-hydroxy acids enantiomers by high-performance liquid chromatography on chemically bonded chiral phases. Chromatographia 19, 257–259.

    Article  Google Scholar 

  78. Gübitz, G. and Juffmann, F. (1987) Resolution of the enantiomers of thyroid hormones by high performance ligand-exchange chromatography using a chemically bonded chiral stationary phase. J. Chromatogr. 404, 391–393.

    Article  PubMed  Google Scholar 

  79. Davankov, V. A., Navratil, J. D., and Walton, H. F. (eds.) (1988) Ligand Exchange Chromatography. CRC Press, Boca Raton.

    Google Scholar 

  80. Davankov, V. A. (1994) Chiral selectors with chelating properties in liquid chromatography: fundamental reflections and selective review of recent developments. J. Chromatogr. A 666, 55–76.

    Article  CAS  Google Scholar 

  81. Kurganov, A. (2001) Chiral chromatographic separations based on ligand exchange. J. Chromatogr. A 906, 51–71.

    Article  PubMed  CAS  Google Scholar 

  82. Davankov, V. A. (2000). 30 years of chiral ligand exchange. Enantiomer 5, 209–223.

    PubMed  CAS  Google Scholar 

  83. Marchelli, R., Corradini, R., Bertuzzi, T., et al. (1996) Chiral discrimination by ligand-exchange chromatography: a comparison between phenylalaninamide-based stationary and mobile phases. Chirality 8, 452–461.

    Article  CAS  Google Scholar 

  84. Gübitz, G., Mihellyes, S., Kobinger, G., and Wutte, A. (1994) New chemically bonded chiral ligand-exchange chromatographic stationary phases. J. Chromatogr. A 666, 91–97.

    Article  Google Scholar 

  85. Wachsmann, M. and Brückner, H. (1998) Ligand-exchange chromatographic separation of DL-amino acids on aminopropylsilica-bonded chiral s-triazines. Chromatographia 47, 637–642.

    Article  CAS  Google Scholar 

  86. Davankov, V. A., Bochkov, A. S., Kurganov, A. A., Roumeliotis, P., and Unger, K. K. (1980) Dealing with the ligand-exchange chromatography. 13. Separation of unmodified alpha-amino-acid enantiomers by reverse phase HPLC. Chromatographia 13, 677–685.

    Article  CAS  Google Scholar 

  87. Remelli, M., Fornasari, P., Dondi, F., and Pulidori, F. (1993) Dynamic column-coating procedure for chiral ligand-exchange chromatography. Chromatographia 37, 23–30.

    Article  CAS  Google Scholar 

  88. Yamazaki, S., Takeuchi, T., and Tanimura, T. (1989) Direct enantiomeric separation of norephedrine and its analogs by high-performance liquid-chromatography. J. Liq. Chromatogr. 12, 2239–2248.

    CAS  Google Scholar 

  89. Ôi, N., Kitahara, H., and Aoki, F. (1993) Enantiomer separation by high-performance liquid-chromatography with copper(ii) complexes of Schiff-bases as chiral stationary phases. J. Chromatogr 631, 177–182.

    Article  Google Scholar 

  90. Ôi, N., Kitahara, H., and Kira, R. (1992) Direct separation of enantiomers by high-performance liquid-chromatography on a new chiral ligand-exchange phase. J. Chromatogr. 592, 291–296.

    Article  Google Scholar 

  91. Wan, Q. H., Shaw, P. N., Davies, M. C., and Barrett, D. A. (1997) Role of alkyl and aryl substituents in chiral ligand exchange chromatography of amino acids study using porous graphitic carbon coated with N-substituted-L-proline selectors. J. Chromatogr. A 786, 249–257.

    Article  CAS  Google Scholar 

  92. Gil-Av, E., Tishbee, A., and Hare, P. E. (1980) Resolution of underivatized amino-acids by reversed-phase chromatography. J. Am. Chem. Soc. 102, 5115–5117.

    Article  CAS  Google Scholar 

  93. Galaverna, G., Pantó, F., Dossena, A., Marchelli, R., and Bigi, F. (1985) Chiral separation of unmodified alpha-hydroxy acids by ligand exchange HPLC using chiral copper(II) complexes of (S)-phenylalaninamide as additives to the eluent. Chirality 7, 331–336.

    Article  Google Scholar 

  94. Günther, K., Martens, J., and Schickedanz, M. (1984) Dünnschichtchromato-graphische Enantiomerentrennung mittels Ligandenaustausch. Angew. Chem. 96, 514–515; (1984) Thin-layer chromatographic enantiomeric resolution via ligand exchange. Angew. Chem. Int. Ed. Engl. 23, 506.

    Article  Google Scholar 

  95. Schmid, M. G., Grobuschek, N., Lecnik, O., and Gübitz, G. (2001) Chiral ligand-exchange capillary electrophoresis. J. Biochem. Biophys. Methods 48, 143–154.

    Article  PubMed  CAS  Google Scholar 

  96. Schmid, M. G., Grobuschek, N., Tuscher, C., et al. (2000) Chiral separation of amino acids by ligand-exchange capillary electrochromatography using continuous beds. Electrophoresis 21, 3141–3144.

    Article  PubMed  CAS  Google Scholar 

  97. Schmid, M. G., Grobuschek, N., Lecnik, O., Gübitz, G., Végvári, Á., and Hjerténs, S. (2001) Enantioseparation of hydroxy acids on easy-to-prepare continuous beds for capillary electrochromatography. Electrophoresis 22, 2616–2619.

    Article  PubMed  CAS  Google Scholar 

  98. Chen, Z. and Hobo, T. (2001) Chemically L-prolinamide-modified monolithic silica column for enantiomeric separation of dansyl amino acids and hydroxy acids by capillary electrochromatography and high-performance liquid chromatography. Electrophoresis 22, 3339–3346.

    Article  PubMed  CAS  Google Scholar 

  99. Schurig, V. (1977) Resolution of a chiral olefin by complexation chromatography on an optically active rhodium(I) complex. Angew. Chem. Int. Ed. Engl. 16, 110.

    Article  Google Scholar 

  100. Schurig, V., Burkle, W., Hintzer, K., and Weber, R. (1989) Evaluation of nickel(II) bis(alpha-(heptafluorobutanoyl)-terpeneketonates) as chiral stationary phases for the enantiomer separation of alkyl-substituted cyclic ethers by complexation gas-chromatography. J. Chromatogr. 475, 23–44.

    Article  CAS  Google Scholar 

  101. Schurig, V., Schmalzing, D., and Schleimer, M. (1991) Enantiomer separation on immobilized Chirasil-Metal and Chirasil-Dex by gas-chromatography and supercritical fluid chromatography. Angew. Chem. Int. Ed. Engl. 30, 987–989.

    Article  Google Scholar 

  102. Jung, M., Schmalzing, D., and Schurig, V. (1991) Theoretical approach to the gas-chromatographic separation of enantiomers on dissolved cyclodextrin derivatives. J. Chromatogr. 552, 43–57.

    Article  CAS  Google Scholar 

  103. Armstrong, D. W. and DeMond, W. (1984) Cyclodextrin bonded phases for the liquid-chromatographic separation of optical, geometrical, and structural isomers. J. Chromatogr. Science 22, 411–415.

    CAS  Google Scholar 

  104. Bressolle, F., Audran, M., Pham, T. N., and Vallon, J. J. (1996) Cyclodextrins and enantiomeric separations of drugs by liquid chromatography and capillary electrophoresis: basic principles and new developments. J. Chromatogr. B 687, 303–336.

    Article  Google Scholar 

  105. Schurig, V. (2001) Separation of enantiomers by gas chromatography. J. Chromatogr. A 906, 275–299.

    Article  PubMed  CAS  Google Scholar 

  106. König, W. A., Lutz, S., Mischnick-Lubbecke, P., Brassat, B., and Wenz, G. (1988) Cyclodextrins as chiral stationary phases in capillary gas-chromatography. 1. Pen-tylated alpha-cyclodextrin. J. Chromatogr. 447, 193–197.

    Article  Google Scholar 

  107. Armstrong, D. W., Li, W. Y., and Pitha, J. (1990) Reversing enantioselectivity in capillary gas-chromatography with polar and nonpolar cyclodextrin derivative phases. Anal. Chem. 62, 214–217.

    Article  PubMed  CAS  Google Scholar 

  108. Vigh, Gy. and Sokolowski, A. D. (1997) Capillary electrophoretic separations of enantiomers using cyclodextrin-containing background electrolytes. Electrophoresis 18, 2305–2310.

    Article  PubMed  CAS  Google Scholar 

  109. Koppenhoefer, B., Zhu, X., Jakob, A., Wuerthner, S., and Lin, B. (2000) Separation of drug enantiomers by capillary electrophoresis in the presence of neutral cyclodextrins. J. Chromatogr. A 875, 135–161.

    Article  PubMed  CAS  Google Scholar 

  110. Chankvetadze, B. (1997) Separation selectivity in chiral capillary electrophoresis with charged selectors. J. Chromatogr. A 792, 269–295.

    Article  CAS  Google Scholar 

  111. De Boer, T., De Zeeuw, R. A., De Jong, G. J., and Ensing, K. (2000) Recent innovations in the use of charged cyclodextrins in capillary electrophoresis for chiral separations in pharmaceutical analysis. Electrophoresis 21, 3220–3239.

    Article  PubMed  Google Scholar 

  112. Tanaka, Y. and Terabe, S. (1997) Enantiomer separation of acidic racemates by capillary electrophoresis using cationic and amphoteric beta-cyclodextrins as chiral selectors. J. Chromatogr. A 781, 151–160.

    Article  PubMed  CAS  Google Scholar 

  113. Lurie, I. S. (1997) Separation selectivity in chiral and achiral capillary electrophoresis with mixed cyclodextrins. J. Chromatogr. A 792, 297–307.

    Article  CAS  Google Scholar 

  114. Fillet, M., Hubert, P., and Crommen, J. (2000) Enantiomeric separations of drugs using mixtures of charged and neutral cyclodextrins. J. Chromatogr. A 875, 123–134.

    Article  PubMed  CAS  Google Scholar 

  115. Terabe, S., Miyashita, Y., Shibata, O., et al. (1990) Separation of highly hydrophobic compounds by cyclodextrin-modified micellar electrokinetic chromatography. J. Chromatogr. 516, 23–31.

    Article  CAS  Google Scholar 

  116. Chankvetadze, B., Schulte, G., and Blaschke, G. (1997) Nature and design of enantiomer migration order in chiral capillary electrophoresis. Enantiomer 2, 157–179.

    CAS  Google Scholar 

  117. Huang, W. X., Xu, H., Fazio, S. D., and Vivilecchia, R. V. (2000) Enhancement of chiral recognition by formation of a sandwiched complex in capillary electrophoresis. J. Chromatogr. A 875, 361–369.

    Article  PubMed  CAS  Google Scholar 

  118. Armstrong, D. W., Chang, L. W., and Chang, S. S. C. (1998) Mechanism of capillary electrophoresis enantioseparations using a combination of an achiral crown-ether plus cyclodextrins. J. Chromatogr. A 793, 115–134.

    Article  PubMed  CAS  Google Scholar 

  119. Bunke, A., Jira, T., and Gübitz, G. (1995) Chiral separation of cyclodrine by means of capillary electrophoresis. Pharmazie 50, 570–571.

    CAS  Google Scholar 

  120. Jira, T., Bunke, A., and Karbaum, A. (1998) Use of chiral and achiral ion-pairing reagents in combination with cyclodextrins in capillary electrophoresis. J. Chromatogr. A 798, 281–288.

    Article  CAS  Google Scholar 

  121. Schmid, M. G., Wirnsberger, K., Jira, T., Bunke, A., and Gübitz, G. (1997) Capillary electrophoretic chiral resolution of vicinal diols by complexation with borate and cyclodextrin—comparative studies on different cyclodextrin derivatives. Chirality 9, 153–156.

    Article  CAS  Google Scholar 

  122. Stefansson, M. and Novotny, M. (1993) Electrophoretic resolution of monosaccharide enantiomers in borate oligosaccharide complexation media. J. Am. Chem. Soc. 115, 11573–11580.

    Article  CAS  Google Scholar 

  123. Jira, T., Bunke, A., Schmid, M. G., and Gübitz, G. (1997) Chiral resolution of diols by capillary electrophoresis using borate-cyclodextrin complexation. J. Chromatogr. A 761, 269–276.

    Article  CAS  Google Scholar 

  124. Mayer, S. and Schurig, V. (1993) Enantiomer separation by electrochromatography in open tubular columns coated with Chirasil-Dex. J. Liq. Chromatogr. 16, 915–931.

    Article  CAS  Google Scholar 

  125. Mayer, S. and Schurig, V. (1994) Enantiomer separation using mobile and immobile cyclodextrin derivatives with electromigration. Electrophoresis 15, 835–841.

    Article  PubMed  CAS  Google Scholar 

  126. Schurig, V., Jung, M., Mayer, S., Fluck, M., Negura, S., and Jakubetz, H. (1995) Unified enantioselective capillary chromatography on a Chirasil-DEX stationary phas. Advantages of column miniaturization. J. Chromatogr. A 694, 119–128.

    Article  PubMed  CAS  Google Scholar 

  127. Wistuba, D., Czesla, H., Roeder, M., and Schurig, V. (1998) Enantiomer separation by pressure-supported electrochromatography using capillaries packed with a permethyl-beta-cyclodextrin stationary-phase. J. Chromatogr. A 815, 183–188.

    Article  PubMed  CAS  Google Scholar 

  128. Wistuba, D. and Schurig, V. (1999) Enantiomer separation by pressure-supported electrochromatography using capillaries packed with Chirasil-Dex polymer-coated silica. Electrophoresis 20, 2779–2785.

    Article  PubMed  CAS  Google Scholar 

  129. Schurig, V. and Wistuba, D. (1999) Recent innovations in enantiomer separation by electrochromatography utilizing modified cyclodextrins as stationary phases. Electrophoresis 20, 2313–2328.

    Article  PubMed  CAS  Google Scholar 

  130. Koide, T. and Ueno, K. (1998) Enantiomeric separations of cationic and neutral compounds by capillary electrochromatography with charged polyacrylamide gels incorporating chiral selectors. Anal. Sci. 14, 1021–1023.

    Article  CAS  Google Scholar 

  131. Végvári, Á., Földesi, A., Hetényi, C. S., et al. (2000) A new easy-to-prepare homogeneous continuous electrochromatographic bed for enantiomer recognition. Electrophoresis 21, 3116–3125.

    Article  PubMed  Google Scholar 

  132. Wistuba, D. and Schurig, V. (2000) Enantiomer separation by capillary electrochromatography on a cyclodextrin-modified monolith. Electrophoresis 21, 3152–3159.

    Article  PubMed  CAS  Google Scholar 

  133. Hesse, G. and Hagel, R. (1973) A complete separation of a racemic mixture by elution chromatography on cellulose triacetate. Chromatographia 6, 277–280.

    Article  CAS  Google Scholar 

  134. Okamoto, Y., Hatada, K., Kawashima, M., and Yamamoto, K. (1984) Chromatographic resolution. 6. Useful chiral packing materials for high-performance liquid-chromatographic resolution-cellulose triacetate and tribenzoate coated on macroporous silica-gel. Chem. Lett. 5, 739–742.

    Article  Google Scholar 

  135. Wainer, I. W. and Alembik, M. C. (1986) Resolution of enantiomeric amides on a cellulose-based chiral stationary phase—steric and electronic effects. J. Chromatogr. 358, 85–93.

    Article  PubMed  CAS  Google Scholar 

  136. Tachibana, K. and Ohnishi, A. (2001) Reversed-phase liquid chromatographic separations of enantiomers on polysaccharide type chiral stationary phases. J. Chromatogr. A 906, 127–154.

    Article  PubMed  CAS  Google Scholar 

  137. Okamoto, Y. and Kaida, Y. (1994) Resolution by high-performance liquid-chromatography using polysaccharide carbamates and benzoates as chiral stationary phases. J. Chromatogr. A 666, 403–419.

    Article  CAS  Google Scholar 

  138. Oguni, K., Oda, H., and Ichida, A. (1995) Development of chiral stationary phases consisting of polysaccharide derivatives. J. Chromatogr. A 694, 91–100.

    Article  CAS  Google Scholar 

  139. Yashima, E. and Okamoto, Y. (1995) Chiral discrimination on polysaccharide derivatives. Bull. Chem. Soc. Jpn. 68, 3289–3307.

    Article  CAS  Google Scholar 

  140. Okamoto, Y. and Yashima, E. (1998) Polysaccharide derivatives for chromatographic separation of enantiomers. Angew. Chem. Int. Ed. 37, 1020–1043.

    Article  Google Scholar 

  141. Yashima, E. (2001) Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation. J. Chromatogr. A 906, 105–125.

    Article  PubMed  CAS  Google Scholar 

  142. Okamoto, Y., Aburatani, R., Hatano, K., and Hatada, K. (1988) Optical resolution of racemic drugs by chiral HPLC on cellulose and amylose tris(phenylcar-bamate) derivatives. J. Liq. Chromatogr. 11, 2147–2163.

    Article  CAS  Google Scholar 

  143. Senso, A., Oliveros, L., and Minguillón, C. (1999) Chitosan derivatives as chiral selectors bonded on allyl silica gel: preparation, characterisation and study of the resulting high-performance liquid chromatography chiral stationary phases. J. Chromatogr. A 839, 15–21.

    Article  CAS  Google Scholar 

  144. Cass, Q. B., Bassi, A. I., and Matlin, S. A. (1996) Chiral discrimination by HPLC on aryl carbamate derivatives of chitin coated onto microporous aminopropyl silica. Chirality 8, 131–135.

    Article  CAS  Google Scholar 

  145. Felix, G. and Zhang, T. (1993) Chiral packing materials for high-performance liquid-chromatographic resolution of enantiomers based on substituted branched polysaccharides coated on silica-gel. J. Chromatogr. 639, 141–149.

    Article  PubMed  CAS  Google Scholar 

  146. Nishi, H. (1997) Enantioselectivity in chiral capillary electrophoresis with polysaccharides. J. Chromatogr. A 792, 327–347.

    Article  PubMed  CAS  Google Scholar 

  147. Soini, H., Stefansson, M., Riekkola, M. L., and Novotny, M. V. (1994) Maltooligo-saccharides as chiral selectors for the separation of pharmaceuticals by capillary electrophoresis. Anal. Chem. 66, 3477–3484.

    Article  PubMed  CAS  Google Scholar 

  148. Chankvetadze, B., Saito, M., Yashima, E., and Okamoto, Y. (1997) Enantiosepa-ration using selected polysaccharides as chiral buffer additives in capillary electrophoresis. J. Chromatogr. A 773, 331–338.

    Article  PubMed  CAS  Google Scholar 

  149. Nakamura, H., Sano, A., and Sumii, H. (1998) Chiral separation of (R,S)-1,1′-binaphthyl-2,2′-diyl hydrogenphosphate by capillary electrophoresis using monosaccharides as chiral selectors. Anal. Sci. 14, 375–378.

    Article  CAS  Google Scholar 

  150. Nishi, H., Nakamura, K., Nakai, H., and Sato, T. (1996) Enantiomer separation by capillary electrophoresis using DEAE-dextran and aminoglycosidic antibiotics. Chromatographia 43, 426–430.

    Article  CAS  Google Scholar 

  151. Armstrong, D. W., Rundlett, K. L., and Chen, J. R. (1994) Evaluation of the macrocyclic antibiotic vancomycin as a chiral selector for capillary electrophoresis. Chirality 6, 496–509.

    Article  PubMed  CAS  Google Scholar 

  152. Armstrong, D. W., Tang, Y. B., Chen, S. S., Zhou, Y. W., Bagwill, C., and Chen, J. R. (1994) Macrocyclic antibiotics as a new class of chiral selectors for liquid-chromatography. Anal. Chem. 66, 1473–1484.

    Article  CAS  Google Scholar 

  153. Armstrong, D. W., Liu, Y., and Ekborg-Ott, K. H. (1995) Covalently bonded teicoplanin chiral stationary-phase for HPLC enantioseparations. Chirality 7, 474–497.

    Article  CAS  Google Scholar 

  154. Ekborg-Ott, K. H., Liu, Y., and Armstrong, D. W. (1998) Highly enantioselective HPLC separations using the covalently bonded macrocyclic antibiotic, ristocetin A, chiral stationary phase. Chirality 10, 434–483.

    Article  PubMed  CAS  Google Scholar 

  155. Ekborg-Ott, K. H., Zientara, G. A., Schneiderheinze, J. M., Gahm, K., and Armstrong, D. W. (1999) Avoparcin, a new macrocyclic antibiotic chiral run buffer additive for capillary electrophoresis. Electrophoresis 20, 2438–2457.

    Article  PubMed  CAS  Google Scholar 

  156. Ward, T. J. and Farris, A. B. III. (2001) Chiral separations using the macrocyclic antibiotics: a review. J. Chromatogr. A 906, 73–89.

    Article  PubMed  CAS  Google Scholar 

  157. Armstrong, D. W. and Zhou, Y. W. (1994) Use of a macrocyclic antibiotic as a chiral selector for the enantiomeric separation by TLC. J. Liq. Chromatogr. 17, 1695–1707.

    Article  CAS  Google Scholar 

  158. Bhushan, R. and Parshad, V. (1996) Thin-layer chromatographic-separation of enantiomeric dansylamino acids using a macrocyclic antibiotic as a chiral selector. J. Chromatogr. A 736, 235–238.

    Article  CAS  Google Scholar 

  159. Ward, T. J. and Oswald T. M. (1997) Enantioselectivity in capillary electrophoresis using the macrocyclic antibiotics. J. Chromatogr. A 792, 309–325.

    Article  PubMed  CAS  Google Scholar 

  160. Desiderio, C. and Fanali, S. (1998) Chiral analysis by capillary electrophoresis using antibiotics as chiral selector. J. Chromatogr. A 807, 37–56.

    Article  PubMed  CAS  Google Scholar 

  161. Armstrong, D. W. and Nair, U. B. (1997) Capillary electrophoretic enantio-separations using macrocyclic antibiotics as chiral selectors. Electrophoresis 18, 2331–2342.

    Article  PubMed  CAS  Google Scholar 

  162. Dermaux, A., Lynen, P., and Sandra, P. (1998) Chiral capillary electrochromatography on a vancomycin stationary phase. J. High Resol. Chromatogr. 21, 575–576.

    Article  CAS  Google Scholar 

  163. Wikström, H., Svensson, L. A., Torstensson, A., and Owens, P. K. (2000) Immobilisation and evaluation of a vancomycin chiral stationary phase for capillary electrochromatography. J. Chromatogr. A 869, 395–409.

    Article  PubMed  Google Scholar 

  164. Carter-Finch, A. S. and Smith, N. W. (1999) Enantiomeric separations by capillary electrochromatography using a macrocyclic antibiotic chiral stationary phase. J. Chromatogr. A 848, 375–385.

    Article  PubMed  CAS  Google Scholar 

  165. Karlsson, C., Wikström, H., Armstrong, D. W., and Owens, P. K. (2000) Enantio-selective reversed-phase and non-aqueous capillary electrochromatography using a teicoplanin chiral stationary phase. J. Chromatogr. A 897, 349–363.

    Article  PubMed  CAS  Google Scholar 

  166. Karlsson, C., Karlsson, K., Armstrong, D. W., and Owens, P. K. (2000) Evaluation of a vancomycin chiral stationary phase in capillary electrochromatography using polar organic and reversed-phase modes. Anal. Chem. 72, 4394–4401.

    Article  PubMed  CAS  Google Scholar 

  167. Desiderio, C., Aturki, Z., and Fanali, S. (2001) Use of vancomycin silica stationary phase in packed capillary electrochromatography I. Enantiomer separation of basic compounds. Electrophoresis 22, 535–543.

    Article  PubMed  CAS  Google Scholar 

  168. Grobuschek, N., Schmid, M. G., Koidl, J., and Gübitz, G. (2002) Enantio-separation of amino acids and drugs by CEC, pressure supported CEC and micro-HPLC using a teicoplanin aglycone stationary phase. J. Sep. Sci. 25, 1297–1302.

    Article  CAS  Google Scholar 

  169. Desiderio, C., Polcaro, C. M., Padiglioni, P., and Fanali, S. (1997) Enantiomeric separation of acidic herbicides by capillary electrophoresis using vancomycin as chiral selector. J. Chromatogr. A 781, 503–513.

    Article  CAS  Google Scholar 

  170. Berthod, A., Chen, X., Kullman, J. P., et al. (2000) Role of the carbohydrate moieties in chiral recognition on teicoplanin-based LC stationary phase Anal. Chem. 72, 1767–1780.

    Article  PubMed  CAS  Google Scholar 

  171. Sousa, L. R., Sogah, G. D. Y., Hoffmann, D. H., and Cram, D. J. (1978) Host-guest complexation. 12. Optical resolution of amine and amino ester salts by chromatography. J. Am. Chem. Soc. 100, 4569–4576.

    Article  CAS  Google Scholar 

  172. Sogah, G. D. Y. and Cram, D. J. (1979) Host-guest complexation. 14. Host covalently bound to polystyrene resin for chromatographic resolution of enantiomers of amino acids and ester salts. J. Am. Chem. Soc. 101, 3035–3042.

    Article  CAS  Google Scholar 

  173. Shinbo, T., Nishimura, K., Sugiura, M., and Yamaguchi, T. (1987) Chromatographic-separation of racemic amino-acids by use of chiral crown ether-coated reversed-phase packings. J. Chromatogr. 405, 145–153.

    Article  PubMed  CAS  Google Scholar 

  174. Machida, Y., Nishi, H., Nakamura, K., Nakai, H., and Sato, T. (1998) Enantiomer separation of amino compounds by a novel chiral stationary phase derived from crown ether. J. Chromatogr. A 805, 85–92.

    Article  CAS  Google Scholar 

  175. Hyun, M. H., Jin, J. S., and Lee, W. (2002) Liquid chromatographic resolution of racemic amino acids and their derivatives on a new chiral stationary phase based on crown ether. J. Chromatogr. A 822, 155–161.

    Article  Google Scholar 

  176. Hyun, M. H., Jin, J. S., Koo, H. J., and Lee, W. (1999) Liquid chromatographic resolution of racemic amines and amino alcohols on a chiral stationary phase derived from crown ether. J. Chromatogr. A 837, 75–82.

    Article  CAS  Google Scholar 

  177. Hyun, M. H., Han, S. C., Lipshutz, B. H., Shin, Y. J., and Welch, C. J. (2001) New chiral crown ether stationary phase for the liquid chromatographic resolution of α-amino acid enantiomers. J. Chromatogr. A 910, 359–365.

    Article  PubMed  CAS  Google Scholar 

  178. Steffeck, R. J., Zelechonok, Y., and Gahm, K. H. (2002) Enantioselective separation of racemic secondary amines on a chiral crown ether-based liquid chromatography stationary phase. J. Chromatogr. A 947, 301–305.

    Article  PubMed  CAS  Google Scholar 

  179. Kuhn, R., Erni, F., Bereuter, T., and Häusler, J. (1992) Chiral recognition and enantiomeric resolution based on host guest complexation with crown ethers in capillary zone electrophoresis. Anal. Chem. 64, 2815–2820.

    Article  CAS  Google Scholar 

  180. Höhne, E., Krauss, G.-J., and Gübitz, G. (1992) Capillary zone electrophoresis of the enantiomers of aminoalcohols based on host-guest complexation with a chiral crown-ether. J. High Resol. Chromatogr. 15, 698–700.

    Article  Google Scholar 

  181. Kuhn, R., Riester, D., Fleckenstein, B., and Wiesmüller, K.-H. (1995) Evaluation of an optically-active crown-ether for the chiral separation of dipeptides and tripeptides. J. Chromatogr. A 716, 371–379.

    Article  PubMed  CAS  Google Scholar 

  182. Schmid, M. G. and Gübitz, G. (1995) Capillary zone electrophoretic separation of the enantiomers of dipeptides based on host-guest complexation with a chiral crown-ether. J. Chromatogr. A 709, 81–88.

    Article  CAS  Google Scholar 

  183. Nishi, H., Nakamura, K., Nakai, H., and Sato, T. (1997) Separation of enantiomers and isomers of amino-compounds by capillary electrophoresis and high-performance liquid-chromatography utilizing crown-ethers. J. Chromatogr. A 757, 225–235.

    Article  CAS  Google Scholar 

  184. Mori, Y., Ueno, K., and Umeda, T. (1997) Enantiomeric separations of primary amino-compounds by nonaqueous capillary zone electrophoresis with a chiral crown-ether. J. Chromatogr. A 757, 328–332.

    Article  CAS  Google Scholar 

  185. Pfeiffer, J. and Schurig, V. (1999) Enantiomer separation of amino acid derivatives on a new polymeric chiral resorc[4]arene stationary phase by capillary gas chromatography. J. Chromatogr. A 840, 145–150.

    Article  CAS  Google Scholar 

  186. Narumi, F., Iki, N., Suzuki, T., Onodera, T., and Miyano, S. (2000) Syntheses of chirally modified thiacalix[4]arenes with enantiomeric amines and their application to chiral stationary phases for gas chromatography. Enantiomer 5, 83–93.

    PubMed  CAS  Google Scholar 

  187. Peña, M. S., Zhang, Y. L., and Warner, I. M. (1997) Enantiomeric separations by use of calixarene electrokinetic chromatography. Anal. Chem. 69, 3239–3242.

    Article  Google Scholar 

  188. Grady, T., Joyce, T., Smyth, M. R., Harris, S. J., and Diamond, D. (1998) Chiral resolution of the enantiomers of phenylglycinol using (S)-di-naphthylprolinol calix[4]arene by capillary electrophoresis and fluorescence spectroscopy. Anal. Commun. 35, 123–125.

    Article  CAS  Google Scholar 

  189. Gasparrini, F., Misiti, D., Villani, C., Borchardt, A., Burger, M. T., and Still, W. C. (1995) Enantioselective recognition by a new chiral stationary-phase at receptorial level. J. Org. Chem. 60, 4314–4315.

    Article  CAS  Google Scholar 

  190. Gasparrini, F., Misiti, D., Still, W. C., Villani, C., and Wennemers, H. (1997) Enantioselective and diastereoselective binding study of silica bound macrobicyclic receptors by HPLC. J. Org. Chem. 62, 8221–8224.

    Article  PubMed  CAS  Google Scholar 

  191. Pieters, R. J., Cuntze, J., Bonnet, M., and Diederich, F. (1995) Enantioselective recognition with C3-symmetric cage-like receptors in solution and on a stationary phase. J. Chem. Soc. Perkin. Trans. 2, 1891–1900.

    Google Scholar 

  192. Hu, K. J., Bradshaw, J. S., Dalley, N. K., Krakowiak, K. E., Wu, N. J., and Lee, M. L. (1999) Synthesis of a chiral macrocyclic dibenzodicyclohexanotetraamide-containing stationary-phase for liquid-chromatography. J. Heterocycl. Chem. 36, 381–387.

    Article  CAS  Google Scholar 

  193. Blaschke, G. (1986) Chromatographic resolution of chiral drugs on polyamides and cellulose triacetate. J. Liq. Chromatogr. 9, 341–368.

    Article  CAS  Google Scholar 

  194. Mohammad, J., Li, Y. M., El-Ahmad, M., Nakazato, K., Pettersson, G., and Hjertén, S. (1993) Chiral recognition chromatography of β-blockers on continuous polymer beds with immobilized cellulase as enantioselective protein. Chirality 5, 464–470.

    Article  Google Scholar 

  195. Koide, T. and Ueno, K. (2001) Enantiomeric separations of primary amino compounds by capillary electrochromatography with monolithic chiral stationary phases of chiral crown ether-bonded negatively charged polyacrylamide gels. J. Chromatogr. A 909, 305–315.

    Article  PubMed  CAS  Google Scholar 

  196. Peters, E. C., Lewandowski, K., Petro, M., Svec, F., and Frechet, J. H. J. (1998) Chiral electrochromatography with a moulded rigid monolithic capillary column. Anal. Commun. 35, 83–86.

    Article  CAS  Google Scholar 

  197. Lämmerhofer, M., Svec, F., Fréchet, J. M. J., and Lindner, W. (2000) Chiral monolithic columns for enantioselective capillary electrochromatography prepared by copoly-merization of a monomer with quinidine functionality. 2. Effect of chromatographic conditions on the chiral separations. Anal. Chem. 72, 4623–4628.

    Article  PubMed  CAS  Google Scholar 

  198. Sinner, F. and Buchmeiser, M. R. (2000) Ringöffnende Metathesepolymerisation: Zugang zu einer neuen Klasse funktionalisierter, monolithischer stationärer Phasen für die Flüssigkeitschromatographie. Angew. Chem. 112, 1491–1494.

    Article  Google Scholar 

  199. Nakano, T. (2001) Optically active synthetic polymers as chiral stationary phases in HPLC. J. Chromatogr. A 906, 205–225.

    Article  PubMed  CAS  Google Scholar 

  200. Wulff, G. and Vesper, W. (1978) Preparation of chromatographic sorbents with chiral cavities for racemic resolution. J. Chromatogr. 167, 171–186.

    Article  CAS  Google Scholar 

  201. Schweitz, L., Andersson, L. I., and Nilsson, S. (1997) Capillary electrochromatography with predetermined selectivity obtained through molecular imprinting. Anal. Chem. 69, 1179–1183.

    Article  CAS  Google Scholar 

  202. Schweitz, L., Andersson, L. I., and Nilsson, S. (1999) Molecular imprinting for chiral separations and drug screening purposes using monolithic stationary phases in CEC. Chromatographia 49, S93–S94.

    Article  CAS  Google Scholar 

  203. Lin, J.-M., Nakagama, T., Wu, X. Z., Uchiyama, K., and Hobo, T. (1997) Capillary electrochromatographic separation of amino acid enantiomers with molecularly imprinted polymers as chiral recognition agents. Fresenius J. Anal. Chem. 357, 130–132.

    Article  CAS  Google Scholar 

  204. Chirica, G. and Remcho, V. T. (1999) Silicate entrapped columns—new columns designed for capillary electrochromatography. Electrophoresis 20, 50–56.

    Article  PubMed  CAS  Google Scholar 

  205. Sellegren, B. (2001) Imprinted chiral stationary phases in high-performance liquid chromatography. J. Chromatogr. A 906, 227–252.

    Article  Google Scholar 

  206. Takeuchi, T. and Haginaka, J. (1999) Separation and sensing based on molecular recognition using molecularly imprinted polymers. J. Chromatogr. B 728, 1–20.

    Article  CAS  Google Scholar 

  207. Remcho, V. T. and Tan, Z. J. (1999) MIPs as chromatographic stationary phases for molecular recognition. Anal. Chem. News. Features 248A–255A.

    Google Scholar 

  208. Haginaka, J. (2001) Protein based chiral stationary phases for HPLC enantio-separations. J. Chromatogr. A 906, 253–273.

    Article  PubMed  CAS  Google Scholar 

  209. Nilsson, S., Schweitz, L., and Petersson, M. (1997) Three approaches to enantiomer separation of beta-adrenergic antagonists by capillary electrochromatography. Electrophoresis 18, 884–890.

    Article  PubMed  CAS  Google Scholar 

  210. Valtcheva, L., Mohammad, J., Pettersson, G., and Hjertén, S. (1993) Chiral separation of beta-blockers by high-performance capillary electrophoresis based on non-immobilized cellulase as enantioselective protein. J. Chromatogr. 638, 263–267.

    Article  CAS  Google Scholar 

  211. Hedeland, M., Isaksson, R., and Pettersson, C. (1998) Cellobiohydrolase-I as a chiral additive in capillary electrophoresis and liquid-chromatography. J. Chromatogr. A 807, 297–305.

    Article  CAS  Google Scholar 

  212. Wang, F. and Khaledi, M. G. (2000) Enantiomeric separations by nonaqueous capillary electrophoresis. J. Chromatogr. A 875, 277–293.

    Article  PubMed  CAS  Google Scholar 

  213. Snopek, J., Jelinek, I., and Smolkova-Keulemansova, E. (1988) Use of cyclo-dextrins in isotachophoresis. 4. The influence of cyclodextrins on the chiral resolution of ephedrine alkaloid enantiomers. J. Chromatogr. 438, 211–218.

    Article  CAS  Google Scholar 

  214. Danková, M., Kaniansky, D., Fanali, S., and Iványi, F. (1999) Capillary zone electrophoresis separations of enantiomers present in complex ionic matrices with on-line isotachophoretic sample pretreatment. J. Chromatogr. A 838, 31–43.

    Article  PubMed  Google Scholar 

  215. Fanali, S., Desiderio, C., ölvecka, E., Kaniansky, D., Vojtek, M., and Ferancova, A. (2000) Separation of enantiomers by on-line capillary isotachophoresis-capillary zone electrophoresis. J. High Resolut. Chromatogr. 23, 531–538.

    Article  CAS  Google Scholar 

  216. Toussaint, B., Hubert, Ph., Tjaden, U. R., van der Greef, J., and Crommen, J. (2000) Enantiomeric separation of clenbuterol by transient isotachophoresis capillary zone electrophoresis-UV detection. New optimization technique for transient isotachophoresis. J. Chromatogr. A 871, 173–180.

    Article  PubMed  CAS  Google Scholar 

  217. Kaniansky, D., Simunicova, E., Ölvecka, E., and Ferancova, A. (1999) Separations of enantiomers by preparative capillary isotachophoresis. Electrophoresis 20, 2786–2793.

    Article  PubMed  CAS  Google Scholar 

  218. Hoffmann, P., Wagner, H., Weber, G., Lanz, M., Caslavska, J., and Thormann, W. (1999) Separation and purification of methadone enantiomersby continuous-and interval-flow electrophoresis. Anal. Chem. 71, 1840–1850.

    Article  CAS  PubMed  Google Scholar 

  219. Glukhovsky, P. and Vigh, Gy. (1999) Analytical-and preparative-scale isoelectric focusing separation of enantiomers. Anal. Chem. 71, 3814–3820.

    Article  CAS  Google Scholar 

  220. Fried, K. and Wainer, I. W. (1997) Column-switching techniques in the biomedical analysis of stereoisomeric drugs: why, how and when. J. Chromatogr. B 689, 91–104.

    Article  CAS  Google Scholar 

  221. Ba, B., Eckert, G., and Leube, J. (1991) Use of dabsylation column switching and chiral separation for the determination of a renin inhibitor in rat marmoset and human plasma. J. Chromatogr. 572, 277–289.

    Article  PubMed  CAS  Google Scholar 

  222. Eto, S., Noda, H., and Noda, A. (1994) Simultaneous determination of antiepi-leptic drugs and their metabolites including chiral compounds via β-cyclodextrin inclusion complexes by a column-switching chromatographic technique. J. Chromatogr. B 658, 385–390.

    Article  CAS  Google Scholar 

  223. Ducharme, J., Fernandez, C., Gimenez, F., and Farinotti, R. (1996) Critical issues in chiral drug analysis in biological fluids by high-performance liquid-chromatography. J. Chromatogr. B 686, 65–75.

    Article  CAS  Google Scholar 

  224. Bojarski, J. and Aboul-Enein, H. Y. (1997) Application of capillary electrophoresis for the analysis of chiral drugs in biological fluids. Electrophoresis 18, 965–969.

    Article  PubMed  CAS  Google Scholar 

  225. Zaugg, S. and Thormann, W. (2000) Enantioselective determination of drugs in body fluids by capillary electrophoresis. J. Chromatogr. A 875, 27–41.

    Article  PubMed  CAS  Google Scholar 

  226. Zhao, J. and Jorgenson, J. W. (1999) Application of synchronous cyclic capillary electrophoresis: isotopic and chiral separations. J. Microcolumn Separations 11, 439–449.

    Article  CAS  Google Scholar 

  227. Arce, L., Tena, M. T., Rios, A., and Valcáreel, M. (1998) Determination of transresveratrol and other polyphenols in wines by a continuous flow sample clean-up system followed by capillary electrophoresis separation. Anal. Chim. Acta 359, 27–38.

    Article  CAS  Google Scholar 

  228. Fang, Z.-L., Liu, Z.-S., and Shen, Q. (1997) Combination of flow injection with capillary electrophoresis. Part I. The basic system. Anal. Chim. Acta 346, 135–143.

    Article  CAS  Google Scholar 

  229. Kuban, P., Pirmohammadi, R., and Karlberg, B. (1999) Flow injection analysis-capillary electrophoresis system with hydrodynamic injection. Anal. Chim. Acta 378, 55–62.

    Article  CAS  Google Scholar 

  230. Hofstetter, O., Hofstetter, H., Wilchek, M., Schurig, V., and Green, B. S. (1998) Antibodies can recognize the chiral center of free α-amino acids. J. Am. Chem. Soc. 120, 3251–3252.

    Article  CAS  Google Scholar 

  231. Hofstetter, O., Hofstetter, H., Wilchek, M., Schurig, V., and Green, B. S. (1999) Chiral discrimination using an immunosensor. Nat. Biotechnol. 17, 371–374.

    Article  PubMed  CAS  Google Scholar 

  232. Silvaieh, H., Schmid, M. G., Hofstetter, O., Schurig, V., and Gübitz, G. (2002) Development of enantioselective chemiluminescence flow-and sequential-injection immunoassays for α-amino acids. J. Biochem. Biophys. Methods 53, 1–14.

    Article  PubMed  CAS  Google Scholar 

  233. Silvaieh, H., Wintersteiger, R., Schmid, M. G., Hofstetter, O., Schurig, V., and Gübitz, G. (2002) Enantioselective sequential injection chemiluminescence immuno-assays for 3, 3′, 5-triiodothyronine (T3) and thyroxine (T4) Anal. Chim. Acta 463, 5–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.,Totowa, NJ

About this protocol

Cite this protocol

Gübitz, G., Schmid, M.G. (2004). Chiral Separation Principles. In: Gübitz, G., Schmid, M.G. (eds) Chiral Separations. Methods in Molecular Biology, vol 243. Humana Press. https://doi.org/10.1385/1-59259-648-7:001

Download citation

  • DOI: https://doi.org/10.1385/1-59259-648-7:001

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-150-9

  • Online ISBN: 978-1-59259-648-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics