Advertisement

Cyclodextrin-Based Chiral Stationary Phases for Liquid Chromatography

A Twenty-Year Overview
  • Clifford R. Mitchell
  • Daniel W. Armstrong
Part of the Methods in Molecular Biology book series (MIMB, volume 243)

Abstract

Reversed-phase chiral stationary phases (CSPs) were important early on because pharmacokinetic and pharmocodynamic studies, which were done via reversed-phase high-performance liquid chromatography (HPLC), required a solvent-compatible CSP to separate chiral analytes and metabolites. The development of stable and effective reversed-phase CSPs eventually led to the US Food and Drug Administration’s 1992 guidelines regarding the development of chiral pharmaceutical products (1). One of the original and more versatile reversed-phase CSPs is based on cyclodextrins and their derivatives. It has been used to separate the enantiomers of over 1000 compounds, as well as numerous diastereomers, structural isomers, homologous compounds, and structurally unrelated compounds. Over 300 articles have been published in the literature on the use of cyclodextrin stationary phases, and countless analytical methods, which utilize these stationary phases, have been developed in academia and industry.

Keywords

Inclusion Complex Organic Mode Chiral Selector Chiral Separation Chiral Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    FDA. (1992) FDA’s policy statement for the development of new stereoisomeric drugs. Chirality 4, 338–340.Google Scholar
  2. 2.
    Cramer, F. and Dietsche, W. (1959) Occlusion compounds. XV. Resolution of racemates with cyclodextrins. Chemische Berichte 92, 378–384.Google Scholar
  3. 3.
    Hinze, W. L. (1981) Applications of cyclodextrins in chromatographic separations and purification methods. Separation Purification Methods 10, 159–237.Google Scholar
  4. 4.
    Armstrong, D. W. (1980) Pseudophase liquid chromatography: applications to TLC. J. Liq. Chromatogr. 3, 895–900.Google Scholar
  5. 5.
    Hinze, W. L. and Armstrong, D. W. (1980) Thin layer chromatographic separation of ortho, meta, and para-substituted benzoic acids and phenols with aqueous solutions of alpha-cyclodextrin. Anal. Lett. 13, 1093–1104.Google Scholar
  6. 6.
    Burkert, W. G., Owensby, C. N., and Hinze, W. L. (1981) The use of an alpha-cyclodextrin mobile phase in the thin-layer chromatographic separation of ortho, meta, and para substituted phenols. J. Liq. Chromatogr. 4, 1065–1085.Google Scholar
  7. 7.
    Fujimura, K., Veda, T., and Ando, T. (1983) Retention behavior of some aromatic compounds on chemically bonded cyclodextrin silica stationary phase in liquid chromatography. Anal. Chem. 55, 446–450.Google Scholar
  8. 8.
    Kawaguchi, Y., Tanaka, M., Nakae, M., Funazo, K., and Shono, T. (1983) Chemically bonded cyclodextrin stationary phases for liquid chromatographic separation of aromatic compounds. Anal. Chem. 55, 1852–1857.Google Scholar
  9. 9.
    Armstrong, D. W. and DeMond, W. (1984) Cyclodextrin bonded phases for the liquid chromatographic separation of optical, geometrical, and structural isomers. J. Chromatogr. Sci. 22, 411–415.Google Scholar
  10. 10.
    Armstrong, D. W., Alak, A., DeMond, W., Hinze, W. L., and Riehl, T. E. (1985) Separation of mycotoxins, polycyclic aromatic hydrocarbons, quinones, and heterocyclic compounds on cyclodextrin bonded phases: an alternative LC packing. J. Liq. Chromatogr. 8, 261–269.Google Scholar
  11. 11.
    Armstrong, D. W., DeMond, W., and Czech, B. P. (1985) Separation of metal-locene enantiomers by liquid chromatography: chiral recognition via cyclodextrin bonded phases. Anal. Chem. 57, 481–484.Google Scholar
  12. 12.
    Armstrong, D. W., Ward, T. J., Armstrong, R. D., and Beesley, T. E. (1986) Separation of drug stereoisomers by the formation of beta cyclodextrin inclusion complexes. Science 232, 1132–1135.PubMedGoogle Scholar
  13. 13.
    Chang, C. A. and Wu, Q. (1986) Comparison of liquid chromatographic separations of geometrical isomers of substituted phenols with beta and gamma cyclodextrin bonded-phase columns. Anal. Chem. Acta 189, 293–299.Google Scholar
  14. 14.
    Hinze, W. L., Riehl, T. E., Armstrong, D. W., DeMond, W., Alak, A., and Ward, T. J. (1985) Liquid chromatographic separation of enantiomers using a chiral beta-cyclodextrin bonded stationary phase and conventional aqueous-organic mobile phases. Anal. Chem. 57, 237–242.Google Scholar
  15. 15.
    Armstrong, D. W., DeMond, W., Alak, A., Hinze, W. L., Riehl, T. E., and Bui, K. (1985) Liquid chromatographic separation of diastereomers and structural isomers on cyclodextrin-bonded phases. Anal. Chem. 57, 234–237.Google Scholar
  16. 16.
    Gillet, B., Nicole, D. J., and Delpuech, J. J. (1982) The hydroxyl group protonation rates of alpha, beta, and gamma-cyclodextrins in dimethyl sulphoxide. Tetrahedron Lett. 23, 65–68.Google Scholar
  17. 17.
    Rees, D. A. (1970) Conformational analysis of polysaccharides. Part V. The characterization of linkage conformations (chain conformations) by optical rotation at a single wavelength. Evidence for distortion of cyclohexaamylose in aqueous solution. Optical rotation and the amylose conformation. J. Chem. Soc. B5, 877–884.Google Scholar
  18. 18.
    Szejtli, J. (1988) in Cyclodextrin Technology. Kulwer Academic Publishers, Boston, MA, pp. 3–4.Google Scholar
  19. 19.
    Armstrong, D. W., Li, W., Chang, C. D., and Pitha, J. (1990) Polar-liquid, derivatized cyclodextrin stationary phases for the capillary gas chromatography separation of enantiomers. Anal. Chem. 62, 914–923.PubMedGoogle Scholar
  20. 20.
    McClanahan, J. S. and Maguire, J. H. (1986) High performance liquid chromatographic determination of the enantiomeric composition of urinary phenolic metabolites of phenytoin. J. Chromatogr. 381, 438–446.PubMedGoogle Scholar
  21. 21.
    Abidi, S. L. (1987) Chiral phase high performance liquid chromatography of rotenoid racemates. J. Chromatogr. 404, 133–143.PubMedGoogle Scholar
  22. 22.
    Armstrong, R. D., Ward, T. J., Pattabiraman, N., Benz, C., and Armstrong, D. W. (1987) Separation of tamoxifen geometric isomers and metabolites by bonded phase beta cyclodextrin chromatography. J. Chromatogr. 414, 192–196.PubMedGoogle Scholar
  23. 23.
    Florance, J., Galdes, A., Kontreatis, Z., Kosarych, Z., Langer, K., and Martucci, C. (1987) High performance liquid chromatographic separation of peptides and amino acid stereoisomers. J. Chromatogr. 414, 313–322.PubMedGoogle Scholar
  24. 24.
    MaCaudiere, P., Caude, M., Rosset, R., and Tambute, A. (1987) Resolution of racemic amides and phosphine oxides on a beta-cyclodextrin bonded stationary phase by subcritical fluid chromatography. J. Chromatogr. 405, 135–143.Google Scholar
  25. 25.
    Maguire, J. H. (1987) Some structural requirements for resolution of hydantoin enantiomers with a beta-cyclodextrin liquid chromatography column. J. Chromatogr. 387, 453–458.PubMedGoogle Scholar
  26. 26.
    Armstrong, D. W., Han, S. M., and Han, Y. I. (1988) Liquid chromatographic resolution of enantiomers containing single aromatic rings with beta-cyclodextrin-bonded phases. Anal. Chem. Acta 208, 275–281.Google Scholar
  27. 27.
    Han, S. M., Han, Y. I., and Armstrong, D. W. (1988) Structural factors affecting chiral recognition and separation on beta-cyclodextrin bonded phases. J. Chromatogr. 441, 376–381.Google Scholar
  28. 28.
    Krstulovic, A. M., Gianviti, J. M., Burke, J. T., and Mompon, B. (1988) Enantiomeric analysis of a new anti-inflammatory agent in rat plasma using a chiral beta cyclodextrin stationary phase. J. Chromatogr. 426, 417–424.PubMedGoogle Scholar
  29. 29.
    Merino, I. M., Gonzalez, E. B., and Sanz-Medel, A. (1988) Liquid chromatographic enantiomeric resolution of amino acids with beta-cyclodextrin bonded phases and derivatization with o-phthalaldehyde. Anal. Chem. Acta 234, 127–131.Google Scholar
  30. 30.
    Seeman, J. I., Secor, H. V., Armstrong, D. W., Timmons, K. D., and Ward, T. J. (1988) Enantiomeric resolution and chiral recognition of racemic nicotine and nicotine analogues by beta-cyclodextrin complexation. Structure-enantiomeric resolution relationships in host-guest interactions. Anal. Chem. 60, 2120–2127.PubMedGoogle Scholar
  31. 31.
    Marziani, F. C. and Sisco, W. R. (1989) Liquid chromatographic separation of positional isomers of suprofen on a cyclodextrin bonded phase. J. Chromatogr. 465, 422–428.PubMedGoogle Scholar
  32. 32.
    Bertucci, C., Domenici, E., Uccello-Barretta, G., and Salvadori, P. (1990) High-performance liquid chromatographic resolution of racemic 1,4-benzodiazepin-2-ones by means of a beta cyclodextrin silica bonded chiral stationary phase. J. Chromatogr. 506, 617–625.Google Scholar
  33. 33.
    Italia, A., Schiavi, M., and Ventura, P. (1990) Direct liquid chromatographic separation of enantiomeric and diastereomeric terpenic alcohols as beta-cyclodextrin inclusion complexes. J. Chromatogr. 503, 266–271.Google Scholar
  34. 34.
    Florance, J. and Kontetis, Z. (1991) Chiral high performance liquid chromatography of aromatic cyclic dipeptides using cyclodextrin stationary phases. J. Chromatogr. 543, 299–305.PubMedGoogle Scholar
  35. 35.
    Krause, M. and Galensa, R. (1991) High performance liquid chromatography of diastereomeric flavanone glycosides in citrus on a beta cyclodextrin bonded stationary phase. J. Chromatogr. 588, 41–45.Google Scholar
  36. 36.
    Li, S. and Purdy, W. C. (1991) Liquid chromatographic separation of the enantiomers of dinitrophenyl amino acids using a beta-cyclodextrin-bonded stationary phase. J. Chromatogr. 543, 105–112.Google Scholar
  37. 37.
    Armstrong, D. W., Chen, S., Chang, C., and Chang, S. (1992) A new approach for the direct resolution of racemic beta adrenergic blocking agents by HPLC. J. Liq. Chromatogr. 15, 545–556.Google Scholar
  38. 38.
    Kuijpers, P. H., Gerding, T. K., and deJong, G. J. (1992) Improvement of the liquid chromatographic separation of the enantiomers of tetracyclic eudistomins by the combination of a beta cyclodextrin stationary phase and camphorsulphonic acid as mobile phase additive. J. Chromatogr. 625, 223–230.Google Scholar
  39. 39.
    Zukowski, J., Pawlowska, M., Nagatkina, M., and Armstrong, D. W. (1993) High performance liquid chromatographic enantioseparation of glycyl di-and tripeptides on native cyclodextrin bonded phases. J. Chromatogr. 629, 169–179.PubMedGoogle Scholar
  40. 40.
    Risley, D. S. and Strege, M. A. (2000) Chiral separations of polar compounds by hydrophilic interaction chromatography with evaporative light scattering detection. Anal. Chem. 72, 1736–1739.PubMedGoogle Scholar
  41. 41.
    Armstrong, D. W., Yang, X., Han, S. M., and Menges, R. A. (1987) Direct liquid chromatographic separation of racemates with an alpha-cyclodextrin bonded phase. Anal. Chem. 59, 2594–2596.PubMedGoogle Scholar
  42. 42.
    Armstrong, D. W. and Zukowski, J. (1994) Direct enantiomeric resolution of monoterpene hydrocarbons via reversed-phase high-performance liquid chromatography with an alpha-cyclodextrin bonded stationary phase. J. Chromatogr. A 666, 445–448.Google Scholar
  43. 43.
    Chang, C. A. and Wu, Q. (1987) Facile liquid chromatographic separation of positional isomers with a gamma-cyclodextrin bonded phase column. J. Liq. Chromatogr. 10, 1359–1368.Google Scholar
  44. 44.
    Stalcup, A. M., Jin, H. L., and Armstrong, D. W. (1990) Separation of enantiomers using an gamma-cyclodextrin liquid chromatographic bonded phase. J. Liq. Chromatogr. 13, 473–484.Google Scholar
  45. 45.
    Change, S. C., Reid, G. L., III., Chen, S., Chang, C. C., and Armstrong, D. W. (1993) Evaluation of a new polar-organic high performance liquid chromatographic mobile phase for cyclodextrin bonded chiral stationary phases. Trends Anal. Chem. 12, 144–153.Google Scholar
  46. 46.
    Stalcup, A. M., Faulkner, J. R., Tang, Y., Armstrong, D. W., Levy, L. W., and Regalado, E. (1991) Determination of the enantiomeric purity of scopolamine isolated from plant extract using achiral/chiral coupled column chromatography. Biomed. Chromatogr. 5, 3–7.PubMedGoogle Scholar
  47. 47.
    Armstrong, D. W., Chang, L. W., Chang, S. C., et al. (1997) Comparison of the enantioselectivity of beta-cyclodextrin vs. heptakis-2,3-dimethyl-beta-cyclodextrin lc stationary phases. J. Liq. Chromatogr. Relat. Technol. 20, 3279–3295.Google Scholar
  48. 48.
    Mitchell, C. R., Desai, M., McCulla, R., Jenks, W., and Armstrong, D. W. (2002) Use of native and derivatized cyclodextrin chiral stationary phases for the enantioseparation of aromatic and aliphatic sulfoxides by high performance liquid chromatography. Chromatographia 56, 127–135.Google Scholar
  49. 49.
    Mitchell, C. R., Schumacher, D. S., Rozhkov, R. V., Larock, R. C., and Armstrong, D. W. (2002) Use of native and derivatized cyclodextrin chiral stationary phases for the enantioseparation of substituted furo-coumarins by high performance liquid chromatography. J. Chromatogr. A., in press.Google Scholar
  50. 50.
    Armstrong, D. W., Wang, X., Chang, L. W., Ibrahim, H., Reid, C. R., and Beesley, T. E. (1997) Comparison of the selectivity and retention of beta-cyclodextrin vs. heptakis-2,3-O-dimethyl-beta cyclodextrin LC stationary phases for structural and geometric isomers. J. Liq. Chromatogr. Relat. Technol. 20, 3297–3308.Google Scholar
  51. 51.
    Stalcup, A. M., Chang, S. C., Armstrong, D. W., and Pitha, J. (1990) (S)-2-Hydroxy-propyl-beta-cyclodextrin, a new chiral stationary phase for reversed-phase liquid chromatography. J. Chromatogr. 513, 181–194.PubMedGoogle Scholar
  52. 52.
    Chang, S. C., Wang, L. R., and Armstrong, D. W. (1992) Facile resolution of N-tert-butoxycarbonyl amino acids: the importance of enantiomeric purity in peptide synthesis. J. Liq. Chromatogr. 15, 1411–1429.Google Scholar
  53. 53.
    Armstrong, D. W., Stalcup, A. M., Hilton, M. L., Duncan, J. D., Faulkner, J. R., and Chang, S. C. (1990) Derivatized cyclodextrins for normal-phase liquid chromatographic separation of enantiomers. Anal. Chem. 62, 1610–1615.Google Scholar
  54. 54.
    Armstrong, D. W., Hilton, M., and Coffin, L. (1991) Multimodal chiral stationary phases for liquid chromatography: (R)-and (S)-naphthylethylcarbamate derivatized beta cyclodextrin. LC GC 9, 646–652.Google Scholar
  55. 55.
    Stalcup, A. M., Chang, S. C., and Armstrong, D. W. (1991) Effect of the configuration of the substituents of derivatized beta-cyclodextrin bonded phases on enantioselectivity in normal phase liquid chromatography. J. Chromatogr. 540, 113–128.Google Scholar
  56. 56.
    Armstrong, D. W., Chang, C. D., and Lee, S. H. (1991) (R)-and (S)-Naphthyl-ethylcarbamate substituted beta cyclodextrin bonded stationary phases for the reversed phase liquid chromatographic separation of enantiomers. J. Chromatogr. 539, 83–90.Google Scholar
  57. 57.
    Richards, D. S., Davidson, S. M., and Holt, R. M. (1996) Detection of non-UV-absorbing chiral compounds by high-performance liquid chromatography-mass spectrometry. J. Chromatogr. A 746, 9–15.Google Scholar
  58. 58.
    Armstrong, D. W., Reid, G. L., III., Hilton, M. L., and Chang, C. D. (1993) Relevance of enantiomeric separations in environmental science. Environ. Pollution 79, 51–58.Google Scholar
  59. 59.
    Pawlowska, M., Chen, S., and Armstrong, D. W. (1993) Enantiomeric separation of fluorescent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, tagged amino acids. J. Chromatogr. 641, 257–265.PubMedGoogle Scholar
  60. 60.
    Berthod, A., Chang, S. C., and Armstrong, D. W. (1992) Empirical procedure that used molecular structure to predict enantioselectivity of chiral stationary phases. Anal. Chem. 64, 395–404.PubMedGoogle Scholar
  61. 61.
    Advanced Separation Technologies. (2000) Astec Chromatography Product Guide. Advanced Separation Technologies, Whippany, NJ, p. 16.Google Scholar
  62. 62.
    Issaq, H. J. (1988) The multimodal cyclodextrin bonded stationary phase for high performance liquid chromatography. J. Liq. Chromatogr. 11, 2131–2146.Google Scholar
  63. 63.
    Chang, C. A., Wu, Q., Abdel-Aziz, H., Melchor, N., Pannell, K. H., and Armstrong, D. W. (1985) Liquid chromatographic retention behavior of organometallic compounds and ligands with amine, octadecyl silica, and beta cyclodextrin-bonded phase columns. J. Chromatogr. 347, 51–60.PubMedGoogle Scholar
  64. 64.
    Abidi, S. L. (1986) Liquid chromatography of hydrocarbonaceous quaternary amines on cyclodextrin bonded silica. J. Chromatogr. 362, 33–46.Google Scholar
  65. 65.
    Chang, C. A., Wu, Q., and Armstrong, D. W. (1986) Reversed-phase high-performance liquid chromatographic separation of substituted phenolic compounds with a beta-cyclodextrin bonded phase column. J. Chromatogr. 354, 454–458.PubMedGoogle Scholar
  66. 66.
    Chang, C. A., Wu, Q., and Eastman, M. P. (1986) Mobile phase effects on the separations of substituted anilines with a beta cyclodextrin bonded column. J. Chromatogr. 371, 269–282.PubMedGoogle Scholar
  67. 67.
    Chang, C. A., Wu, Q., and Tan, L. (1986) Normal-phase high performance liquid chromatographic separations of positional isomers of substituted benzoic acids with amine and beta-cyclodextrin bonded-phase columns. J. Chromatogr. 361, 199–207.PubMedGoogle Scholar
  68. 68.
    Issaq, H. J., Weiss, R., Ridlon, C., Fox, S. D., and Muschik, G. M. (1986) The determination of asparatame in diet soft drinks by high performance liquid chromatography. J. Liq. Chromatogr. 9, 1791–1802.Google Scholar
  69. 69.
    Snider, B. G. (1986) Separation of cis-trans isomers of prostaglandins with a cyclodextrin bonded column. J. Chromatogr. 351, 548–553.Google Scholar
  70. 70.
    Jin, H. L., Stalcup, A. M., and Armstrong, D. W. (1988) Separation of cyclodextrins using cyclodextrin bonded phases. J. Liq. Chromatogr. 11, 3295–3304.Google Scholar
  71. 71.
    Mathes, L. E., Muschik, G. M., Demby, L., et al. (1988) High-performance liquid chromatographic determination of 2′,3′-dideocycytidine and 3′-azido-3′-deoxy-thymidine in plasma using a column switching technique. J. Chromatogr. 432, 346–351.PubMedGoogle Scholar
  72. 72.
    Armstrong, D. W. and Jin, H. L. (1989) Evaluation of the liquid chromatographic separation of monosaccharides, disaccharides, trisaccharides, tetrasaccharides, deoxysaccharides, and sugar alcohols with stable cyclodextrin bonded phase columns. J. Chromatogr. 462, 219–232.PubMedGoogle Scholar
  73. 73.
    Fielden, P. R. and Packham, A. J. (1989) Selective determination of benzo[a] pyrene in petroleum based products using multi column liquid chromatography. J. Chromatogr. 479, 117–124.Google Scholar
  74. 74.
    Matsui, H. and Sekiyu, T. (1989) High performance liquid chromatographic separation of urinary hippuric and o-, m-and p-methylhippuric acids with a beta cyclo-dextrin-bonded column. J. Chromatogr. 496, 189–193.PubMedGoogle Scholar
  75. 75.
    Seeman, J. I., Secor, H. V., Armstrong, D. W., Ward, K. D., and Ward, T. J. (1989) Separation of homologous and isomeric alkaloids related to nicotine on a beta-cyclodextrin-bonded phase. J. Chromatogr. 483, 169–177.Google Scholar
  76. 76.
    Tripathi, A. M., Mhalas, J. G., and Rama Rao, N. V. (1989) Determination of 2,6-and 4,6-dinitrocresols by high-performance liquid chromatography on a beta-cyclodextrin bonded column. J. Chromatogr. 466, 442–445.Google Scholar
  77. 77.
    Armstrong, D. W., Bertrand, G. L., Ward, K. D., Ward, T. J., Secor, H. V., and Seeman, J. L. (1990) Evaluation of the effect of organic modifier and ph on retention and selectivity in reversed-phase liquid chromatographic separation of alkaloids on a cyclodextrin bonded phase. Anal. Chem. 62, 332–338.Google Scholar
  78. 78.
    Atamna, I. Z., Muschik, G. M., and Issaq, H. J. (1990) Effect of alcohol chain length, concentration and polarity on separations in high performance liquid chromatography using bonded cyclodextrin columns. J. Chromatogr. 499, 477–488.PubMedGoogle Scholar
  79. 79.
    Ho, J. W. (1990) Separation of porphyrins on cyclodextrin-bonded phases with a novel mobile phase. J. Chromatogr. 508, 375–381.PubMedGoogle Scholar
  80. 80.
    Stalcup, A. M., Jin, H. L., Armstrong, D. W., Mazur, P., Derguini, F., and Naka-nishi, K. (1990) Separation of carotenes on cyclodextrin-bonded phases. J. Chromatogr. 499, 627–635.PubMedGoogle Scholar
  81. 81.
    Packham, A. J. and Fielden, P. R. (1991) Column switching for the high-performance liquid chromatographic analysis of polynuclear aromatic hydrocarbons in petroleum products. J. Chromatogr. 552, 575–582.Google Scholar
  82. 82.
    Simms, P. J., Haines, R. M., and Hicks, K. B. (1993) High performance liquid chromatography of neutral oligosaccharides on a beta-cyclodextrin bonded phase column. J. Chromatogr. 648, 131–137.Google Scholar
  83. 83.
    Tsou, T. L., Wu, J. R., Young, C. D., and Wang, T. M. (1997) Simultaneous determination of amoxcillin and clavulanic acid in pharmaceutical products by HPLC with beta-cyclodextrin stationary phase. J. Pharm. Biomed. Anal. 15, 1197–1205.PubMedGoogle Scholar
  84. 84.
    Boehm, R. E., Martire, D. E., and Armstrong, D. W. (1988) Theoretical considerations concerning the separation of enantiomeric solutes by liquid chromatography. Anal. Chem. 60, 522–528.PubMedGoogle Scholar
  85. 85.
    Bertrand, G. L., Faulkner, J. R., Han, S. M., and Armstrong, D. W. (1989) Substituent effects on the binding of phenols to cyclodextrins in aqueous solution. J. Phys. Chem. 93, 6863–6867.Google Scholar
  86. 86.
    Tarr, M. A., Nelson, G., Patonay, G., and Warner, I. M. (1988) The influence of mobile phase alcohol modifiers on HPLC of polycyclic aromatics using bonded phase cyclodextrin columns. Anal. Lett. 21, 843–856.Google Scholar
  87. 87.
    Torok, G., Peter, A., Gaucher, A., Wakselman, M., Mazaleyrat, J. P., and Armstrong, D. W. (1999) High performance liquid chromatographic separation of novel atropic alpha,alpha-disubstituted beta amino acids, either on different betacyclo-dextrin bonded phases or as their 1-fluoro-2,4-dinitrophenyl-5-l-alanine amide derivatives. J. Chromatogr. A 846, 83–91.PubMedGoogle Scholar
  88. 88.
    Ringo, M. C. and Evans, C. E. (1997) Role of modest pressures in chiraly selective complexation interactions. J. Physical Chemistry B 101, 5525–5530.Google Scholar
  89. 89.
    Ringo, M. C. and Evans, C. E. (1997) Pressure-dependent retention and selectivity in reversed-phase liquid chromatographic separations using beta-cyclodextrin stationary phases. Anal. Chem. 69, 643–649.Google Scholar
  90. 90.
    Ringo, M. C. and Evans, C. E. (1997) Pressure-induced changes in chiral separations in liquid chromatography. Anal. Chem. 69, 4964–4971.Google Scholar
  91. 91.
    Armstrong, D. W. (1984) Chiral stationary phases for high performance liquid chromatographic separation of enantiomers: a mini review. J. Liq. Chromatogr. 7, 353–376.Google Scholar
  92. 92.
    Dappen, R., Arm, H., and Meyer, V. R. (1986) Applications and limitations of commercially available chiral stationary phases for high performance liquid chromatography. J. Chromatogr. 373, 1–20.Google Scholar
  93. 93.
    Ward, T. J. and Armstrong, D. W. (1986) Improved cyclodextrin chiral phases: a comparison and review. J. Liq. Chromatogr. 9, 407–423.Google Scholar
  94. 94.
    Armstrong, D. W. (1987) Optical isomer separation by liquid chromatography. Anal. Chem. 59, 84A–91A.PubMedGoogle Scholar
  95. 95.
    Han, S. M. and Armstrong, D. W. (1989) HPLC separation of enantiomers and other isomers with cyclodextrin-bonded phases: rules for chiral recognition, in Chiral Separations by HPLC: Applications to Pharmaceutical Compounds (Krstulovic, A. M., ed.), Ellis Horwood Limited, West Sussex, England, pp. 208–225.Google Scholar
  96. 96.
    Armstrong, D. W. (1997) The evolution of chiral stationary phases for liquid chromatography. LC-GC Curr. Issues HPLC Technol. 15, S20–S28.Google Scholar
  97. 97.
    Ward, T. J. (2000) Chiral separations. Anal. Chem. 72, 4521–4528.PubMedGoogle Scholar
  98. 98.
    Sýkora, D., Tesarová, E., and Armstrong, D. W. (2002) Practical considerations of the influence of organic modifiers on the ionization of analytes and buffers in reversed-phase LC. LC GC 20, 974–981.Google Scholar
  99. 99.
    Issaq, H. J., Glennon, M. L., Weiss, D. E., and Fox, S. D. (1987) High-performance liquid chromatography using a beta-cyclodextrin-bondes silica column: effect of temperature on retention, in Ordered Media in Chemical Separations (Hinze, W. L. and Armstrong, D. W., ed.). American Chemical Society, Washington, DC, pp. 260–271.Google Scholar
  100. 100.
    Armstrong, D. W., Ward, T. J., Czech, A., Czech, B. P., and Bartsch, R. A. (1985) Synthesis, rapid resolution, and determination of absolute configuration of race-mic 2,2′-binaphthyldiyl crown ethers and analogues via beta cyclodextrin complexiation. J. Org. Chem. 50, 5556–5559.Google Scholar
  101. 101.
    Armstrong, D. W., Han, S. M., and Han, Y. I. (1987) Separation of optical isomers os scopolamine, cocaine, homatropine, and atropine. Anal. Biochem. 167, 261–264.PubMedGoogle Scholar
  102. 102.
    Oliw, E. H. (1987) Chromatography of B prostaglandins on b-cyclodextrin silica: application to analysis of major E prostaglandins in human seminal fluid. J. Chromatogr. 421, 117–122.PubMedGoogle Scholar
  103. 103.
    Issaq, H. J., Williams, D. G., Schults, N., and Saavedra, J. E. (1988) High performance liquid chromatography separations of nitrosamines. III. Conformers of N-nitrosamino acids. J. Chromatogr. 452, 511–518.PubMedGoogle Scholar
  104. 104.
    Macaudiere, P., Daude, M., Rosset, R., and Tambute, A. (1988) Chiral resolution of a series of 3-thienylcyclohexylglycolic acids by liquid or subcritical fluid chromatography, a mechanistic study. J. Chromatogr. 450, 255–269.Google Scholar
  105. 105.
    Geisslinger, G., Dietzel, K., Lowe, D., et al. (1989) High performance liquid chromatographic determination of ibuprofen, its metabolites and enantiomers in biological fluids. J. Chromatogr. 491, 139–149.PubMedGoogle Scholar
  106. 106.
    Henson, C. A. and Stone, J. M. (1989) Rapid high performance liquid chromatographic separation of barley malt alpha-amylase on cyclobond columns. J. Chromatogr. 469, 361–367.Google Scholar
  107. 107.
    Vigh, G., Farkas, G., and Quintero, G. (1989) Displacement chromatography on cyclodextrin-silicas. II. Separation of cis-trans isomers in the reversed phase mode on alpha-cyclodextrin silica. J. Chromatogr. 484, 251–257.PubMedGoogle Scholar
  108. 108.
    Vigh, G., Quintero, G., and Farkas, G. (1989) Displacement chromatography on cyclodextrin-silicas. I. Separation of positional and geometrical isomers in the reversed phase mode. J. Chromatogr. 484, 237–250.PubMedGoogle Scholar
  109. 109.
    Chang, C. A., Ji, H., and Lin, G. (1990) Effects of mobile phase composition on the reversed-phase separation of dipeptides and tripeptides with cyclodextrin bonded-phase columns. J. Chromatogr. 522, 143–152.PubMedGoogle Scholar
  110. 110.
    Krause, M. and Galensa, R. (1990) Optical resolution of flavanones by high performance liquid chromatography on various chiral stationary phases. J. Chromatogr. 514, 147–159.Google Scholar
  111. 111.
    Vigh, G., Quintero, G., and Farkas, G. (1990) Displacement chromatography on cyclodextrin-silicas. III. Enantiomer separations. J. Chromatogr. 506, 481–493.PubMedGoogle Scholar
  112. 112.
    Chan, K. Y., George, R. C., Chen, T., and Okerholm, R. A. (1991) Direct enantiomeric separation of terfenadine and its major acid metabolite by high-performance liquid chromatography, and the lack of stereoselective terfenadine enantiomer biotransformation in man. J. Chromatogr. 571, 291–297.PubMedGoogle Scholar
  113. 113.
    West, R. R. and Cardellina, J. H. (1991) Semi-preparative separation of polyhy-droxylated sterols using a beta-cyclodextrin high-performance liquid chromatography column. J. Chromatogr. 539, 15–23.Google Scholar
  114. 114.
    Xu, M. and Tran, C. D. (1991) High-performance liquid chromatographic separation of racemic and diastereomeric mixtures of 2,4-pentadienoate iron tricarbonyl derivatives. J. Chromatogr. 543, 233–240.PubMedGoogle Scholar
  115. 115.
    Furuta, R. and Nakazawa, H. (1992) Liquid chromatographic separation of the enantiomers of diniconazole using a β-cyclodextrin-bonded column. J. Chromatogr. 625, 231–235.Google Scholar
  116. 116.
    Plesek, J. and Bruner, B. (1992) Liquid chromatographic resolution of enantiomers of deltahedral carborane and metallaborane derivatives. J. Chromatogr. 626, 167–206.Google Scholar
  117. 117.
    Sternitzke, K. D., Fan, T. Y., and Dunn, D. L. (1992) High-performance liquid chromatographic determination of pilocarpine hydrochloride and its degradation products using a β-cyclodextrin column. J. Chromatogr. 589, 159–164.PubMedGoogle Scholar
  118. 118.
    Armstrong, D. W., Gasper, M., Lee, S. H., Zukowski, J., and Ercal, N. (1993) D-Amino acid levels in human physiological fluids. Chirality 5, 375–378.PubMedGoogle Scholar
  119. 119.
    Farkas, G., Irgens, L. H., Quintero, G., Beeson, M. D., AlOSaeed, A., and Vigh, G. (1993) Displacement chromatograpy on cyclodextrin silicas, IV. Separation of the enantiomers of ibuprofen. J. Chromatogr. 645, 67–74.PubMedGoogle Scholar
  120. 120.
    Green, J., Jones, R., Harrison, R. D., Edwards, D. S., and Glacjeh, J. L. (1993) Liquid chromatographic separation of radiopharmaceutical ligand enantiomers. J. Chromatogr. 635, 203–209.Google Scholar
  121. 121.
    Shaw, C. J., Sanfilippo, P. J., McNally, J. J., Park, S. A., and Press, J. B. (1993) Analytical and preparative high-performance liquid chromatographic separation of thienopyran enantiomers. J. Chromatogr. 631, 173–175.Google Scholar
  122. 122.
    Abidi, S. L. and Mounts, T. L. (1994) Separations of tocopherols and methylated tocols on cyclodextrin-bonded silica. J. Chromatogr. A 670, 67–75.Google Scholar
  123. 123.
    Camilleri, P., Reid, C. A., and Manallack, D. T. (1994) Chiral recognition of structurally related aminoalkylphosphonic acid derivatives on an acetylated beta-cyclodextrin bonded phase. Chromatographia 38, 771–775.Google Scholar
  124. 124.
    Pawlowska, M., Zukowski, J., and Armstrong, D. W. (1994) Sensitive enantiomeric separation of aliphatic and aromatic amines using aromatic anhydrides as non-chiral derivatizing agents. J. Chromatogr. A 666, 485–491.PubMedGoogle Scholar
  125. 125.
    Rundlett, K. L. and Armstrong, D. W. (1994) Evaluation of free D-glutamate in processed foods. Chirality 6, 277–282.PubMedGoogle Scholar
  126. 126.
    Ekborg-Ott, K. H. and Armstrong, D. W. (1996) Evaluation of the concentration and enantiomeric purity of selected free amino acids in fermented malt beverages (beers). Chirality 8, 49–57.PubMedGoogle Scholar
  127. 127.
    Lelievre, F., Yan, C., Zare, R. N., and Gareil, P. (1996) Capillary electrochro-matography: operating characteristics and enantiomeric separations. J. Chromatogr. A 723, 145–156.Google Scholar
  128. 128.
    Williams, K. L., Sander, L. C., and Wise, S. A. (1996) Comparison of liquid and supercritical fluid chromatography using naphthylethylcarbamolated beta cyclodextrin chiral stationary phases. J. Chromatogr. A 746, 91–101.Google Scholar
  129. 129.
    Pham-Huy, C., Chikhi-Chorfi, N., Galons, H., et al. (1997) Enantioselective high performance liquid chromatography determination of methadone enantiomers and its major metabolite in human biological fluids using a new derivatized cyclodextrin bonded phase. J. Chromatogr. B 700, 155–163.Google Scholar
  130. 130.
    Armstrong, D. W., Lee, J. T., and Chang, L. W. (1998) Enantiomeric impurities in chiral catalysts, ausilaries, and synthons used in enantioselective synthesis. Part 1. Tetrahedron Asymmetry 9, 2043–2064.Google Scholar
  131. 131.
    Sadeghipour, F. and Veuthey, J. L. (1998) Enantiomeric separation of four methylenediosylated amphetamines on beta-cyclodextrin chiral stationary phases. Chromatographia 47, 285–290.Google Scholar
  132. 132.
    Araki, T., Kashiwamoto, Y., Tsunoi, S., and Tanaka, M. (1999) Preparation and enantiomer separation behavior of selectively methylated gamma-cyclodextrin bonded stationary phases for high performance liquid chromatography. J. Chromatogr. A 845, 455–462.Google Scholar
  133. 133.
    Armstrong, D. W., He, L., Yu, R., Lee, J. R., and Liu, Y. S. (1999) Enantiomeric impurities in chiral catalysts, ausilaries, synthons and resolving agents. Part 2. Tetrahedron Asymmetry 10, 37–60.Google Scholar
  134. 134.
    Herraex-Hernandez, R. and Campins-Falco, P. (2001) Chiral separation of ephedrines by liquid chromatography using beta cyclodextrins. Anal. Chem. Acta 434, 315–324.Google Scholar
  135. 135.
    Kim, T. Y. and Kim, H. J. (2001) Chiral separation of 9-fluorenylmethyl chloroformate and dansyl chloride-derivatized dl serine by gamma gyglocextrin bonded high performance liquid chromatography. J. Chromatogr. A 933, 99–106.PubMedGoogle Scholar
  136. 136.
    Advanced Separation Technologies. (2002) Cyclobond Handbook. Advanced Separation Technologies, Whippany, NJ.Google Scholar
  137. 137.
    Armstrong, D. W. and Zhang, B. (2001) Chiral stationary phases for HPLC. Anal. Chem. 73, 557A–561A.PubMedGoogle Scholar

Copyright information

© Humana Press Inc.,Totowa, NJ 2004

Authors and Affiliations

  • Clifford R. Mitchell
    • 1
  • Daniel W. Armstrong
    • 1
  1. 1.Department of ChemistryIowa State UniversityAmes

Personalised recommendations