Skip to main content

How to Build Up Biosensors With the Cantilever of the Atomic Force Microscope

  • Protocol
Atomic Force Microscopy

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 242))

  • 1589 Accesses

Abstract

With the advent of the atomic force microscopy (AFM), the study of biological samples has become more realistic because, in most cases, samples are not covered or fixed and this makes it possible to observe them while alive (1,2). This advantage of the AFM prompted a new invention: nanobiosensors using the cantilever (probe) of the AFM, which made possible the observation of specific molecules (including medications) as they enter or exit living cells (3,4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pereira, R. S., Parizotto, N. A., and Baranauskas, V. (1996) Observation of baker’s yeast used in biotransformations by atomic force microscopy. Appl. Biochem. Biotechnol. 59, 135–144.

    Article  CAS  Google Scholar 

  2. Pereira, R. S., Durán, N., and Teschke, O. (1998) Observation of structures on Saccharomyces cerevisiae cell wall by atomic force microscope. Probe Microsc. 1, 277–282.

    Google Scholar 

  3. Pereira, R. S. (2000) Detection of the absorption of glucose molecules by living cells using atomic force microscopy. FEBS Lett. 475, 43–46.

    Article  Google Scholar 

  4. Pereira, R. S. (2001) Atomic force microscopy: a novel pharmacological tool. Biochem. Pharmacol. 62, 975–983.

    Article  PubMed  CAS  Google Scholar 

  5. Wu, X., Shindoh, H., and Hobo, T. (1994) A novel thermooptical detection method for enzyme reaction based on the optical beam deflection induced by reaction heat. Microchem. J. 49, 213–219.

    Article  CAS  Google Scholar 

  6. Wu, X., Tatsuya, M., Uchiyama, K., and Hobo, T. (1997) Noncontact and noninvasive monitoring of gas diffusion from aqueous solution to aprotic solvent using the optical beam deflection method. J. Phys. Chem. 101, 1520–1523.

    CAS  Google Scholar 

  7. Wu, X., Uchiyama, K., and Hobo, T. (1996) Real time one dimensional imaging for reaction heat-induced optical beam deflection. Anal. Lett. 29, 1993–1999.

    CAS  Google Scholar 

  8. Wu, X., Shindoh, H., and Hobo, T. (1995) Thermooptical flow-injection determination for hydrogen peroxide based on an enzymic reaction heat-induced optical beam deflection. Anal. Chim. Acta 299, 333–336.

    Article  CAS  Google Scholar 

  9. Wu, X. and Hobo, T. (1995) Monitoring and analyzing of a chemical reaction process using reaction heat-induced optical beam deflection. Anal. Chim. Acta 316, 111–115.

    Article  CAS  Google Scholar 

  10. Fritz, J., Baller, M. K., Lang, H. P., et al. (2000) Translating biomolecular recognition into nanomechanics. Science 288, 316–318.

    Article  PubMed  CAS  Google Scholar 

  11. Ben-Arie, A., Hagay, Z., Ben-Hurt, H., Open, M., and Dgani, R. (1999) Elevated serum alkaline phosphatase may enable early diagnosis of ovarian cancer. Eur. J. Obstet. Gyn. Reprod. Biol. 86, 69–71.

    Article  CAS  Google Scholar 

  12. Magnusson, P., Larsson, L., Englund, G., Larsson, B., Strang, P., and Selin-Sjogren, L. (1998) Differences of bone alkaline phosphatase isoforms in metastatic bone disease and discrepant effects of clodronate on different skeletal sites indicated by the location of pain. Clin. Chem. 44, 1621–1628.

    PubMed  CAS  Google Scholar 

  13. Magnusson, P., Larsson, L., Magnusson, M., Davie, M. W. J., and Sharp, C. A. (1999) Isoforms of bone alkaline phosphatase: Characterization and origin in human trabecular and cortical bone. J. Bone Miner. Res. 14, 1926–1933.

    Article  PubMed  CAS  Google Scholar 

  14. Shiele, F., Artur, Y., Floch, A. Y., and Siest, G. (1998) Total, tartrate-resistant, and tartrate-inhibited acid phosphatases in serum: Biological variations and reference limits. Clin. Chem. 34, 685–690.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

de Souza Pereira, R. (2004). How to Build Up Biosensors With the Cantilever of the Atomic Force Microscope. In: Braga, P.C., Ricci, D. (eds) Atomic Force Microscopy. Methods in Molecular Biology™, vol 242. Humana Press. https://doi.org/10.1385/1-59259-647-9:365

Download citation

  • DOI: https://doi.org/10.1385/1-59259-647-9:365

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-094-6

  • Online ISBN: 978-1-59259-647-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics