Skip to main content

Lymphoblastoid Cells Exposed to Low-Frequency Magnetic Fields

Study by Atomic Force Microscopy

  • Protocol
Book cover Atomic Force Microscopy

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 242))

  • 1579 Accesses

Abstract

Since the appearance of the first pioneering article in the 1970s, particular efforts have been made to study the effect of exposure to electric and magnetic fields (EMFs) on living matter (110). The initial interest in radio frequency and microwaves has shifted to include the nonthermal, and essentially magnetic, effect of extremely low frequencies (ELF, 1–300 Hz), in particular the 50 and 60 Hz of the electric power system (3,4,9). The density of normal ELF fields is usually below 0.1 μT, but values of 0.5 μT may be found in front of television sets and computer monitors (11) as well as at a distance of 50 m from 300-kV high-voltage power lines (12). Values up to two to three orders of magnitude higher can be found near some domestic appliances or in some industrial processes, and pulsed magnetic fields in the range 1–10 mT are used in nuclear magnetic resonance imaging and for the therapy of soft tissue or nonhealing bone fractures (1).The increasing interest in ELF fields has been partially motivated by epidemiological reports of an increase in some types of cancer and leukemia in children (13,14) and workers exposed to high levels of ambient fields. Carcinogenesis is considered to be a multistep process consisting of initiation-promotion-progression stages (15). Although ELF magnetic fields are not considered sufficiently energetic to interact with DNA and initiate a cancerous process, they could, by acting on cellular receptors, affect cell proliferation and modulate the promotion or progression stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bassett, C. A. L., Mitchell, S. N., and Gaston, S. R. (1982) Pulsing electromagnetic field treatment in ununited fractures and failed arthrodeses. JAMA 247, 623–628.

    Article  PubMed  CAS  Google Scholar 

  2. Liboff, A. R. (1985) Cyclotron resonance in membrane transport, in Interaction Between Electromagnetic Fields and Cells (Chiabrera, A., Nicolini, C., and Schwan, H. P., eds.) NATO ASI, series A 97, Plenum Press, New York, pp 281.

    Google Scholar 

  3. Walleczeck, J. (1992) Electromagnetic field effect on cells of the immune system: the role of calcium signaling. FASEB J. 6, 3177–3185.

    Google Scholar 

  4. Glaser, R. (1992) Current concepts of the interaction of weak electromagnetic fields with cells. Bioelectrochem. Bioenerg. 27, 255–268.

    Article  Google Scholar 

  5. Paradisi, S., Donelli, G., Santini, M. T., Straface, E., and Marloni, W. A. (1993) A 50 Hz magnetic field induces structural and biophysical changes in membranes. Bioelectromagnetics 14, 247–255.

    Article  PubMed  CAS  Google Scholar 

  6. Tenforde, T. S. (1995) Interaction of extremely low frequency electric and magnetic fields with humans, in Handbook of Biological Effects of Electromagnetic Field, 2nd ed, Chapter 4 (Polk, C. and Postow, E., eds.) CRC Press, Boca Raton, FL, pp. 185–230.

    Google Scholar 

  7. Polk, C. (1995) Electric and magnetic fields for bone and soft tissue repairs, in Handbook of Biological Effects of Electromagnetic Field, 2nd ed., Chapter 5 (Polk, C. and Poston, E., eds.) CRC Press, Boca Raton, FL, pp. 231–246.

    Google Scholar 

  8. Stevens, R. G. (1995) Epidemiological studies of electromagnetic fields and health, in Handbook of Biological Effects of Electromagnetic Field, 2nd ed., Chapter 7 (Polk, C. and Poston, E., eds.) CRC Press, Boca Raton, FL, pp. 275–294

    Google Scholar 

  9. Kaiser, F. (1996) External signals and internal oscillation dynamics: Biophysical aspects and modelling approaches for interactions of weak electromagnetic fields at the cellular level. Bioelectrochem. Bioenerg. 41, 3–18.

    Article  CAS  Google Scholar 

  10. Santoro, N., Lisi, A., Pozzi, D., Pasquali, E., Serafino, A., and Grimaldi S (1997) Effect of extremely low frequency magnetic field exposure on morphological and biophysical properties of human lymphoid cell line (Raji). Biochem. Biophys. Acta 1357, 281–290.

    Article  PubMed  CAS  Google Scholar 

  11. Tofani, S. and D’Amore, G. (1991) Extremely low frequency and very low frequency magnetic fields emitted by video display units. Bioelectromagnetics 12, 35–45.

    Article  PubMed  CAS  Google Scholar 

  12. Vistnes, A. I., Ramberg, G. B., Bjornevik, L. R., Tynes, T., and Haldorsen T. (1997) Exposure of children to residual magnetic fields in Norway: Is proximity to power lines an adequate predictor of exposure? Bioelectromagnetics 18, 47–57.

    Article  PubMed  CAS  Google Scholar 

  13. Savitz, D. A., John, E. M., and Kleckner, R. C. (1990) Magnetic field exposure appliances and childhood cancer. Am. J. Epidemiol. 191, 763–773.

    Google Scholar 

  14. Coghill, R. W. (1996) Low frequency electric and magnetic fields in the bedplace of children with leukaemia. Biophysics. 41, 809–816.

    Google Scholar 

  15. Kavet, R. (1996) EMF and current cancer concept. Bioelectromagnetics 17, 339–357

    Article  PubMed  CAS  Google Scholar 

  16. Rosenthal, M. and Obe, G. (1989) Effects of 50-Hertz electromagnetic fields on proliferation and chromosomal alterations in human peripheral lymphocytes untreated or pretreated with chemical mutagens. Mutat. Res. 210, 329–335.

    PubMed  CAS  Google Scholar 

  17. Loscher, W. and Mevissen, M. (1995) Linear relationship between flux density and tumor co-promoting effect of prolonged magnetic field exposure in a breast cancer model. Cancer Lett. 96, 175–179

    Article  PubMed  CAS  Google Scholar 

  18. Blank, M. (1987) The surface compartment model: a theory of ion transport focused on ionic processes in the electric double layers at membrane protein surface. Biochem. Biophys. Acta 906, 277–294

    PubMed  CAS  Google Scholar 

  19. Lednev, V. V. (1996) Bioeffects of weak combined, constant and variable magnetic fields. Biophysics 41, 241–252.

    Google Scholar 

  20. Barnes, F. S. (1996) Effect of electromagnetic fields on the rate of chemical reactions. Biophysics 41, 801–808.

    Google Scholar 

  21. Carson, J. J. L., Prato, F. S., Drost, D. J., Diesbourg, L. D., and Dixon, S. J. (1990) Time varying magnetic fields increase cytosolic free Ca2+ in HL-60 cells. Am. J. Physiol. 259, 687–692.

    Google Scholar 

  22. Cadossi, R., Bersani, F., Cossarizza, A., et al. (1992) Lymphocytes and low frequency electromagnetic fields. FASEB J. 6, 2667–2674.

    PubMed  CAS  Google Scholar 

  23. Alipov, Y. D. and Belyaev, I. Y. (1996) Difference in frequency spectrum of extremely low frequency effects on the genome conformational state of AB1157 and E. coli cells. Bioelectromagnetism 17, 384–387.

    Article  CAS  Google Scholar 

  24. Shao, Z., Mou, J., Czajkowsky, D. M., Yang, J., and Yuan, J. Y. (1996) Biological atomic force microscopy: What is achieved and what is needed. Adv. Phys. 45, 1–86.

    Article  CAS  Google Scholar 

  25. Butt, H. J., Wolff, E. K., Gould, S. A. C., Dixon Nothern, B., Peterson, C. M., and Hansma, P. K. (1990) Imaging cells with the atomic force microscope. J. Struct. Biol. 105, 54–61.

    Google Scholar 

  26. Gould, S. A. C., Drake, B., Prater, C. B., et al. (1990) From atoms to integrated chips, blood cells and bacteria with the atomic force microscope. J. Vac. Sci. Tecnol. A. 8, 369–373.

    Article  CAS  Google Scholar 

  27. Bustamante, C., Vesenka, J., Tang, C. L., Rees, W., Guthold, M., and Keller, R. (1992) Circular DNA molecules imaged in air by scanning force microscopy. Biochemistry 31, 22–28.

    Article  PubMed  CAS  Google Scholar 

  28. Henderson, E., Haydon, P. G., and Sakaguchi, D. S. (1992) Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science 257, 1944–1946.

    Article  PubMed  CAS  Google Scholar 

  29. Cricenti, A., De Stasio, G., Generosi, R., Perfetti, P., Ciotti, M. T., and Mercanti D (1995) Atomic force microscopy of neuron networks. Scanning Microsc. 9, 695–700.

    PubMed  CAS  Google Scholar 

  30. Zecca, L., Dal Conte, G., Furia, G., and Ferrario, P (1985) The effect of alternating magnetic field on experimental inflammation in the rat. Bioelectrochem. Bioenerg. 14, 39–43.

    Article  CAS  Google Scholar 

  31. Stuchly, M. A., Ruddick, J., Villeneuve, D., et al. (1988) Teratological assessment of exposure to time-varying magnetic field. Teratology 38, 461–466.

    Article  PubMed  CAS  Google Scholar 

  32. McLean, J. R. N., Stuchly, M. A., Mitchel, R. E. J., et al. (1991) Cancer promotion in a mouse skin model by 60-Hz magnetic field: II. Tumor development and immune response. Bioelectromagnetics 12, 273–287.

    Article  PubMed  CAS  Google Scholar 

  33. Santini, M. T., Cannetti, C., Paradisi, S., et al. (1995) A 50 Hz sinusoidal magnetic field induces changes in the membrane electrical properties of K562 leukaemic cells. Bioelectrochem. Bioenerg. 36, 39–45.

    Article  CAS  Google Scholar 

  34. Weiss, A. and Imboden, J. B. (1987) Cell surface molecules and early events involved in human T lymphocyte activation. Adv. Immunol. 41, 1–38.

    Article  PubMed  CAS  Google Scholar 

  35. Greene, J. J., Skowronski, W. J., Mullins, J. M., Nardone, R. M., Penafiel, M., and Meister, R. (1991) Delineation of electric and magnetic field effects of extremely low frequency electromagnetic radiation on transcription. Biochem. Biophys. Res. Commun. 174, 742–749.

    Article  PubMed  CAS  Google Scholar 

  36. Conti, P., Gigante, G. E., Alesse, E., Cifone, M. G., Fieschi, C., Reale, M., and Angeletti, P. U. (1985) A role for calcium in the effect of very low frequency electromagnetic field on the blastogenesis of human lymphocytes. FEBS Lett. 181, 28–32.

    Article  PubMed  CAS  Google Scholar 

  37. Lin, P. S., Wallach, D. F. H., and Tsai, S. (1973) Temperature induced variations in the surface topology of cultured lymphocytes are revealed by scanning electron microscopy. Proc. Nat. Acad. Sci. USA 70, 2492–2496.

    Article  PubMed  CAS  Google Scholar 

  38. Weaver, J. C. and Astumian D (1990) The response of living cells to very weak electric fields: The thermal noise limit. Science 247, 459–462.

    Article  PubMed  CAS  Google Scholar 

  39. Pulvertaft, R. J. V. (1964) Cytology of Burkitt’s tumour (African lymphoma). Lancet 1, 238–240.

    Article  PubMed  CAS  Google Scholar 

  40. Mercanti, D., De Stasio, G., Ciotti, M. T., et al. (1991) Photoelectron microscopy in the life science: Imaging neuron network. J. Vac. Sci. Technol. A 9, 1320–1322

    Article  CAS  Google Scholar 

  41. Lo Russo, G. F., De Stasio, G., Casalbore, P., et al. (1997) Photoemission analysis of chemical differences between the membrane and cytoplasm of neuronal cells. J. Phys. D 30, 1794–1798

    Google Scholar 

  42. Cricenti, A. and Generosi R (1995) Air operating atomic force-scanning tunneling microscope suitable to study semiconductors, metals and biological samples. Rev. Sci. Instrum. 66, 2843–2847.

    Article  CAS  Google Scholar 

  43. Cricenti, A., De Stasio, G., Generosi, R., et al. (1996) Native and modified uncoated neurons observed by atomic force microscopy. J. Vac. Sci. Technol. A. 14, 1741–1746.

    Article  CAS  Google Scholar 

  44. De Stasio, G., Cricenti, A., Generosi, R., et al. (1995) Neurone decapping characterization by atomic force microscopy: A topological systematic analysis. NeuroReport. 7, 65–68.

    Article  PubMed  Google Scholar 

  45. Bretscher, M. S. (1996) Getting membrane flow and the cytoskeleton to cooperate in moving cells. Cell 87, 601–606.

    Article  PubMed  CAS  Google Scholar 

  46. Allen, L. A. and Aderem A (1995) A role for MARCKS, the {a} isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages. J. Exp. Med. 182, 829–840.

    Article  PubMed  CAS  Google Scholar 

  47. Knutton, S., Summer, M. C. B., and Pasternak, C. A. (1975) Role of microvilli in surface changes of synchronized P815Y mastocytoma cells. J. Cell Biol. 66, 568–576.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Grimaldi, S., Girasole, M., Cricenti, A. (2004). Lymphoblastoid Cells Exposed to Low-Frequency Magnetic Fields. In: Braga, P.C., Ricci, D. (eds) Atomic Force Microscopy. Methods in Molecular Biology™, vol 242. Humana Press. https://doi.org/10.1385/1-59259-647-9:323

Download citation

  • DOI: https://doi.org/10.1385/1-59259-647-9:323

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-094-6

  • Online ISBN: 978-1-59259-647-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics