Atomic Force Microscopy of Interfacial Monomolecular Films of Pulmonary Surfactant

  • Kaushik Nag
  • Robert R. Harbottle
  • Amiyo K. Panda
  • Nils O. Petersen
Part of the Methods in Molecular Biology™ book series (MIMB, volume 242)


Pulmonary surfactant (PS) is a lipid protein complex secreted at the terminal airways of the lung. The material is secreted as lipid rich multilamellate bodies, which transforms into lipid—protein tubules, planar bilayers, and monomolecular films at the alveolar air—aqueous interface (1,2). The films reduce the surface tension of the interface and prevents lung collapse during end expiration (3). PS layers also act as a protective barrier against inhaled particles and bacteria and keeps the upper airways or bronchioles open during respiration (3). Dysfunction of PS has been implicated in various lung diseases, such as asthma, acute respiratory distress syndrome, cystic fibrosis, and pneumonia (4). The composition of PS is conserved in most air-breathing species; however, its high content of saturated phosphatidylcholine (PC) and phosphatidylglycerol (PG) is unique compared with other secretory materials and cell membranes, which lack these phospholipids (1,5). Specifically, PS contains significant amounts of dipalmitoylphosphatidylcholine (DPPC), palmitoyl-oleyl-PC (POPC) and PG (POPG), cholesterol, and small amounts (10%) of surfactant proteins SP-A, SP-B, SP-C, and SP-D (1). It is not clear to date how this lipid—protein complex functions by forming alveolar films or barrier in situ because such fragile and dynamic films are difficult to preserve for traditional electron microscopy (2,3). In vitro studies have focused on model lipid—protein films of PS and also by extracting the material out of lungs and studying interfacial properties of surface tension of such material using Langmuir and other surface balances (6, 7, 8).


Atomic Force Microscopy Pulmonary Surfactant Surface Balance Minimal Surface Area Lipid Packing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Possmayer, F, Nag, K., Rodriguez, K., Quanbar, R., and S. Schürch (2001) Surface activity in vitro: Role of surfactant proteins. Comp. Biochem. Physiol. A. 129, 209–320.CrossRefGoogle Scholar
  2. 2.
    Nag, K, Munro, J. G., Hearn S. A., Rasmusson, J., Petersen N. O., and Possmayer, F. (1999) Correlated atomic force and transmission electron microscopy of nanotubular structures in pulmonary surfactant. J. Struct. Biol., 126, 1–15.PubMedCrossRefGoogle Scholar
  3. 3.
    Goerke, J (1998) Pulmonary surfactant: Functions and molecular composition. Biochim. Biophys. Acta 1408, 79–89.PubMedGoogle Scholar
  4. 4.
    Greise, M. (1999) Pulmonary surfactant in health and lung disease: State of the art. Eur. Respir. J. 13, 1455–1476.CrossRefGoogle Scholar
  5. 5.
    Veldhuizen, R. A. W., Nag, K, Orgeig, S., and Possmayer, F. (1998) The role of lipids in pulmonary surfactant. Biochim. Biophys. Acta 1408, 90–108.PubMedGoogle Scholar
  6. 6.
    Nag, K, Perez-Gil, J., Ruano, M.L.F., Worthman, L. A. D., Stewart, J., Casals, C., and Keough, K. M. W. (1998) Phase transitions in films of lung surfactant at the air-water interface. Biophys. J. 74, 2983–2995.PubMedCrossRefGoogle Scholar
  7. 7.
    Von Nahmen, A., Schenk, M., Seiber, M., and Amrein, M. (1997) The structure of model surfactant as revealed by scanning force microscopy. Biophys. J. 72, 463–469.CrossRefGoogle Scholar
  8. 8.
    Piknova, B., Scheif, W.R., Vogel, V., Discher, B. M., and Hall, S. B. (2001) Discrepancy between phase behavior of lung surfactant phospholipids and the classical model of surfactant function. Biophys. J. 81, 2172–2180.PubMedCrossRefGoogle Scholar
  9. 9.
    Nag, K., Harbottle, R. R., and Panda, A. K. (2000) Molecular architecture of a self-assembled bio-interface: Lung surfactant. J. Surface Sci. Technol. 16, 157–170.Google Scholar
  10. 10.
    Brockman, H. (1999) Lipid monolayers: why use half a membrane to characterize protein-membrane interactions? Curr. Opin. Struct. Biol. 9, 438–443.PubMedCrossRefGoogle Scholar
  11. 11.
    Kaganer, V.M, Möhwald, H, and Dutta, P. (1999) Structure and phase transition in Langmuir monolayers. Rev. Mod. Phys. 71, 779–819.CrossRefGoogle Scholar
  12. 12.
    Radmacher, M, Tillman, R.W., Fritz, M., and Gaub, H. E. (1992) From molecules to cells: Imaging soft samples with atomic force microscope. Science 257, 1900–1905.PubMedCrossRefGoogle Scholar
  13. 13.
    Zasadzinski, J. A. N., and Hansma, P. K. (1990) Scanning tunneling microscopy and atomic force microscopy of biological surfaces. Ann. NY Acad. Sci. 589, 476–491.CrossRefGoogle Scholar
  14. 14.
    Ding, J, Takamoto, D. Y, VonNahmen, A, Lipp, M.M., Lee, K.Y.C., Waring, A., and Zasadzinski, J. A. (2001) Effects of lung surfactant proteins, SP-B and SP-C and palmitic acid on monolayer stability. Biophys. J. 80, 2262–2272.PubMedCrossRefGoogle Scholar
  15. 15.
    Chi, L. F., Anders, F, Fuchs, H, Jhonston, R. R., and Ringsdorf, H. (1993) Domain structures in Langmuir-Blodgett films investigated by atomic force microscopy. Science 259, 213–216.PubMedCrossRefGoogle Scholar
  16. 16.
    Mikrut, J. M., Dutta, P., Ketterson, J. B., and MacDonald, R. C. (1993) Atomic-force and fluorescence microscopy of Langmuir—Blodgett monolayers pf 1,2,-dimyristoyl-phosphatidic acid. Phys. Rev. B. 48, 14,479–14,487.CrossRefGoogle Scholar
  17. 17.
    Zhai, X and Kleijn, J. M. (1997) Molecular structure of dipalmitoylphosphatidylcholine Langmuir—Blodgett monolayers studied by atomic force microscopy. Thin Solid Films 304, 327–332.CrossRefGoogle Scholar
  18. 18.
    Veldhuizen, R. A. W., Welk, B., Harbottle, R., Hearn, S., Nag, K., Petersen, N. O., and Possmayer, F (2001) Mechanical ventilation of isolated rat lungs changes the structure and biophysical properties of surfactant. J. Appl. Physiol. 92, 1169–1175.Google Scholar
  19. 19.
    Nag, K, Perez-Gil, J., Cruz, A., Rich, N. H., and Keough, K. M. W. (1996) Spontaneous formation of interfacial lipid-protein monolayers from adsorption from vesicles. Biophys. J. 71, 1356–1363.PubMedCrossRefGoogle Scholar
  20. 20.
    Nag, K, Boland, C, Rich, N. H., and Keough, K.M.W. (1990) Design and construction of an epifluorescence microscopic surface balance for the study of lipid monolayer phase transition. Rev. Sci. Instrum. 61, 3425–3430.CrossRefGoogle Scholar
  21. 21.
    Gibson, C.T., Watson G. S., and Myhra, S. (1996) Scanning force microscopy-Callibrative procedures for “best practice.” Scanning 19, 564–581.CrossRefGoogle Scholar
  22. 22.
    Gibson, C. T., Watson G. S., Mapledoram, L. D., Kondo, H., and Myhra, S. (1999) Characterization of organic thin films by atomic force microscopy:application of force vs distance analysis and other modes. Appl. Surf. Sci. 144/145, 618–622.CrossRefGoogle Scholar
  23. 23.
    Scheif, W. R., Touryan, L., Hall, S.B., and Vogel, V. (2000) Nanoscale topographic instabilities of a phospholipid monolayer. J. Phys. Chem. 104, 7388–7393.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Kaushik Nag
    • 1
  • Robert R. Harbottle
    • 2
  • Amiyo K. Panda
    • 3
  • Nils O. Petersen
    • 2
  1. 1.Department of BiochemistryMemorial University of NewfoundlandSt. John’sCanada
  2. 2.Department of ChemistryUniversity of Western OntarioCanada
  3. 3.Department of ChemistryBehala CollegeKolkataIndia

Personalised recommendations