Skip to main content

Analysis of the Mammalian Cell Cycle by Flow Cytometry

  • Protocol
Cell Cycle Checkpoint Control Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 241))

  • 1874 Accesses

Abstract

One of the most common uses of flow cytometry is to analyze the cell cycle of mammalian cells. Flow cytometry can measure the deoxyribonucleic acid (DNA) content of individual cells at a rate of several thousand cells per second and thus conveniently reveals the distribution of cells through the cell cycle. The DNA-content distribution of a typical exponentially growing cell population is composed of two peaks (cells in G1/G0 and G2/M phases) and a valley of cells in S phase (see Fig. 1). G2/M-phase cells have twice the amount of DNA as G1/G0-phase cells, and S-phase cells contain varying amounts of DNA between that found in G1 and G2 cells. Most flow-cytometric methods of cell cycle analysis cannot distinguish between G1 and G0 cells or G2 and M cells, so they are grouped together as G1/G0 and G2/M. However, there are flow-cytometric methods that can distinguish four or even all five cell cycle subpopulations: G0, G1, S, G2, and M (13). Furthermore, each subpopulation can be quantified (4). Obviously, flow cytometry with these unique features is irreplaceable for monitoring the cell cycle status and its regulation.

A typical cell cycle distribution of DNA content. Based on DNA content in individual cells, a cell population in exponential growth status can be divided into three subpopulations: G1/G0, S, and G2/M.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, B., Kim, S. T., and Kastan, M. B. (2001) Involvement of BRCA1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol. Cell. Biol. 21, 3445–3450.

    Article  PubMed  CAS  Google Scholar 

  2. Larsen, J. K., Munch-Petersen, B., Christiansen, J., and Jorgensen, K. (1986) Flow cytometric discrimination of mitotic cells: resolution of M, as well as G1, S, and G2 phase nuclei with mithramycin, propidium iodide, and ethidium bromide after fixation with formaldehyde. Cytometry 7, 54–63.

    Article  PubMed  CAS  Google Scholar 

  3. Pollack, A., Moulis, H., Greenstein, D. B., Block, N. L., and Irvin, G. L. III. (1985) Cell kinetic effects of incorporated 3H-thymidine on proliferating human lymphocytes: flow cytometric analysis using the DNA/nuclear protein method. Cytometry 6, 428–436.

    Article  PubMed  CAS  Google Scholar 

  4. Ormerod, M. G. (2000) Analysis of DNA—general methods, In: Flow Cytometry, (Ormerod, M. G., eds.), Oxford University Press, New York, pp. 83–98.

    Google Scholar 

  5. Morgan, S. E. and Kastan, M. B. (1997) p53 and ATM: cell cycle, cell death, and cancer. Adv. Cancer Res. 71, 1–25.

    Article  PubMed  CAS  Google Scholar 

  6. Zhou, B. B. and Elledge, S. J. (2000) The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439.

    Article  PubMed  CAS  Google Scholar 

  7. Enoch, T. and Nurse, P. (1991) Coupling M phase and S phase: controls maintaining the dependence of mitosis on chromosome replication. Cell 65, 921–923.

    Article  PubMed  CAS  Google Scholar 

  8. Weinert, T. A. (1991) Dual cell cycle checkpoints sensitive to chromosome replication and DNA damage in the budding yeast Saccharomyces cerevisiae. Radiat. Res. 132, 141–143.

    Article  Google Scholar 

  9. Xu, B., Kim, S. T., Lim D. S., and Kastan M. B. (2002) Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol. Cell. Biol. 22, 1049–1059.

    Article  PubMed  CAS  Google Scholar 

  10. Cliby, W. A., Roberts C. J., Cimprich K. A., et al. (1998) Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 17, 159–169.

    Article  PubMed  CAS  Google Scholar 

  11. Wei, Y., Mizzen, C. A., Cook, R. G., Gorovsky, M. A., and Allis, C. D. (1998) Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc. Natl. Acad. Sci. USA. 95, 7480–7484.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Hang, H., Fox, M.H. (2004). Analysis of the Mammalian Cell Cycle by Flow Cytometry. In: Lieberman, H.B. (eds) Cell Cycle Checkpoint Control Protocols. Methods in Molecular Biology™, vol 241. Humana Press. https://doi.org/10.1385/1-59259-646-0:23

Download citation

  • DOI: https://doi.org/10.1385/1-59259-646-0:23

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-115-8

  • Online ISBN: 978-1-59259-646-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics