Methods for Detecting Cells in S Phase

  • Wei-Hsin Sun
  • Melvin L. DePamphilis
Part of the Methods in Molecular Biology™ book series (MIMB, volume 241)

Abstract

S phase is that period of time in the cell-division cycle during which nuclear chromosomal deoxyribonucleic acid (DNA) is replicated (1,2). The time required for S phase depends on the size of the genome, the organism, and its developmental state. DNA replication requires only 15 to 20 min in budding yeast, but 6 to 7 h in mammalian cells. In organisms, such as frogs, fish, echinoderms, and flies that undergo rapid cell cleavage events at the beginning of their development, S phase takes only a few minutes during these initial cell cleavage events, but it takes several hours in late-stage embryos, adult animals, or cells cultured in vitro.

Keywords

Formaldehyde Glycerol Gelatin Creatine Paraformaldehyde 

References

  1. 1.
    DePamphilis, M. L. (ed.) (1996) DNA Replication in Eukaryotic Cells. Cold Spring Harbor Laboratory, Plainview, NY.Google Scholar
  2. 2.
    Kornberg, A. and Baker, T. (1992) DNA Replication. W. H. Freeman, New York.Google Scholar
  3. 3.
    DePamphilis, M. L. (1995) Specific labeling of newly replicated DNA. Methods Enzymol. 262, 628–669.PubMedCrossRefGoogle Scholar
  4. 4.
    DePamphilis, M. L. (ed.) (1997) Identification and Analysis of Replication Origins in Eukaryotic Cells, Vol. 13. Methods. Academic, New York.Google Scholar
  5. 5.
    Jackman, J. and O’Connor, P. M. (2002) Methods for synchronizing cells at specific stages of the cell cycle, In: Current Protocols in Cell Biology (Bonifacino J. S., et al., ed.), Wiley, New York, Unit 8.3.Google Scholar
  6. 6.
    Taylor, J. H., Myers, T. L., and Cunningham, H. L. (1971) Programmed synthesis of deoxyribonucleic acid during the cell cycle. In Vitro 6, 309–321.PubMedCrossRefGoogle Scholar
  7. 7.
    Gilbert, D. M., Miyazawa, H., and DePamphilis, M. L. (1995) Site-specific initiation of DNA replication in Xenopus egg extract requires nuclear structure. Mol. Cell. Biol. 15, 2942–2954.PubMedGoogle Scholar
  8. 8.
    Brooks, R. F. (1975) The kinetics of serum-induced initiation of DNA synthesis in BHK 21/C13 cells, and the influence of exogenous adenosine. J. Cell. Physiol. 86(2 Pt 2 Suppl 1), 369–377.PubMedCrossRefGoogle Scholar
  9. 9.
    Hola, M., Castleden, S., Howard, M., and Brooks, R. F. (1994) Initiation of DNA synthesis by nuclei from scrape-ruptured quiescent mammalian cells in high-speed supernatants of Xenopus egg extracts. J. Cell Sci. 107(Pt 11), 3045–3053.PubMedGoogle Scholar
  10. 10.
    Rogers, M. (2002) Detection of hybridized probe, In: Current Protocols in Molecular Biology (Ausubel F. M., et al., ed.). Wiley, New York, Unit 14.4.Google Scholar
  11. 11.
    Taylor, J. H. (1968) Rates of chain growth and units of replication in DNA of mammalian chromosomes. J. Mol. Biol. 31, 579–594.PubMedCrossRefGoogle Scholar
  12. 12.
    Shewach, D. S., Ellero, J., Mancini, W. R., and Ensminger, W. D. (1992) Decrease in TTP pools mediated by 5-bromo-2-deoxyuridine exposure in a human glioblastoma cell line. Biochem. Pharmacol. 43, 1579–1585.PubMedCrossRefGoogle Scholar
  13. 13.
    Nakamura, H., Morita, T., and Sato, C. (1986) Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus. Exp. Cell Res. 165, 291–297.PubMedCrossRefGoogle Scholar
  14. 14.
    Jackson, D. A. and Pombo, A. (1998) Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell Biol. 140, 1285–1295.PubMedCrossRefGoogle Scholar
  15. 15.
    Herman, B. (2002) Fluorescence microscopy, In: Current Protocols in Cell Biology (Bonifacino J. S., et al., ed.), Wiley, New York, Unit 4.2.Google Scholar
  16. 16.
    Bouniol-Baly, C., Nguyen, E., Besombes, D., and Debey, P. (1997) Dynamic organization of DNA replication in one-cell mouse embryos: relationship to transcriptional activation. Exp. Cell Res. 236, 201–211.PubMedCrossRefGoogle Scholar
  17. 17.
    Anderson, S. and DePamphilis, M. L. (1979) Metabolism of Okazaki fragments during simian virus 40 DNA replication. J. Biol. Chem. 254, 11,495–11,504.PubMedGoogle Scholar
  18. 18.
    Heintz, N. H. and Stillman, B. W. (1988) Nuclear DNA synthesis in vitro is mediated via stable replication forks assembled in a temporally specific fashion in vivo. Mol. Cell. Biol. 8, 1923–1931.PubMedGoogle Scholar
  19. 19.
    Dimitrova, D. S. and Gilbert, D. M. (1998) Regulation of mammalian replication origin usage in Xenopus egg extract. J. Cell Sci. 111(Pt 19), 2989–2998.PubMedGoogle Scholar
  20. 20.
    Krude, T. (2000) Initiation of human DNA replication in vitro using nuclei from cells arrested at an initiation-competent state. J. Biol. Chem. 275, 13,699–13,707.PubMedCrossRefGoogle Scholar
  21. 21.
    Graham, J. M. (2002) Isolation of nuclei and nuclear membranes from animal tissues, In: Current Protocols in Cell Biology (Bonifacino J. S. et al.,, ed.). Wiley, New York, Unit 3.10.Google Scholar
  22. 22.
    Fisher, P. A. and Berrios, M. (1998) Cell-free nuclear assembly and disassembly in Drosophila. Methods Cell Biol. 53, 397–416.PubMedCrossRefGoogle Scholar
  23. 23.
    Berrios, M. (1998) Isolation and characterization of karyoskeletal protein-enriched fractions from vertebrate livers. Methods Cell Biol. 53, 3–22.PubMedCrossRefGoogle Scholar
  24. 24.
    Dove, J. E., Brockenbrough, J. S., and Aris, J. P. (1998) Isolation of nuclei and nucleoli from the yeast Saccharomyces cerevisiae. Methods Cell Biol. 53, 33–46.PubMedCrossRefGoogle Scholar
  25. 25.
    Chong, J. P., Thommes, P., Rowles, A., Mahbubani, H. M., and Blow, J. J. (1997) Characterization of the Xenopus replication licensing system. Methods Enzymol. 283, 549–564.PubMedCrossRefGoogle Scholar
  26. 26.
    Mills, A. D., Coleman, N., Morris, L. S., and Laskey, R. A. (2000) Detection of S-phase cells in tissue sections by in situ DNA replication. Nat. Cell Biol. 2, 244–245.PubMedCrossRefGoogle Scholar
  27. 27.
    Sun, W., Hola, M., Pedley, K., et al. (2000) The replication capacity of intact mammalian nuclei in Xenopus egg extracts declines with quiescence, but the residual DNA synthesis is independent of Xenopus MCM proteins. J. Cell Sci. 113(Pt 4), 683–695.PubMedGoogle Scholar
  28. 28.
    Blow, J. J. and Laskey, R. A. (1986) Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell 47, 577–587.PubMedCrossRefGoogle Scholar
  29. 29.
    Hutchison, C. J., Cox, R., Drepaul, R. S., Gomperts, M., and Ford, C. C. (1987) Periodic DNA synthesis in cell-free extracts of Xenopus eggs. EMBO J. 6, 2003–2010.PubMedGoogle Scholar
  30. 30.
    Bravo, R. (1986) Synthesis of the nuclear protein cyclin (PCNA) and its relationship with DNA replication. Exp. Cell Res. 163, 287–293.PubMedCrossRefGoogle Scholar
  31. 31.
    Kill, I. R., Bridger, J. M., Campbell, K. H., Maldonado-Codina, G., and Hutchison, C. J. (1991) The timing of the formation and usage of replicase clusters in S-phase nuclei of human diploid fibroblasts. J. Cell Sci. 100(Pt 4), 869–876.PubMedGoogle Scholar
  32. 32.
    Dimitrova, D. S., Todorov, I. T., Melendy, T., and Gilbert, D. M. (1999) Mcm2, but not RPA, is a component of the mammalian early G1-phase prereplication complex. J. Cell Biol. 146, 709–722.PubMedCrossRefGoogle Scholar
  33. 33.
    Iftode, C., Daniely, Y., and Borowiec, J. A. (1999) Replication protein A (RPA): the eukaryotic SSB. Crit. Rev. Biochem. Mol. Biol. 34, 141–180.PubMedCrossRefGoogle Scholar
  34. 34.
    Todorov, I. T., Attaran, A., and Kearsey, S. E. (1995) BM28, a human member of the MCM2-3-5 family, is displaced from chromatin during DNA replication. J. Cell Biol. 129, 1433–1445.PubMedCrossRefGoogle Scholar
  35. 35.
    Gray, J. W. and Coffino, P. (1979) Cell cycle analysis by flow cytometry. Methods Enzymol. 58, 233–248.PubMedCrossRefGoogle Scholar
  36. 36.
    Darzynkiewicz, Z., Juan, G., and Bedner, E. (2002) Cell cycle analysis, In: Current Protocols in Cell Biology (Bonifacino J. S., et al., ed.). Wiley, New York, Unit 8.4.Google Scholar
  37. 37.
    Dean, P. N. (2002) Flow cytometry instrumentation, In: Current Protocols in Cytometry (Robinson, J. P., ed.). Wiley, New York, Unit 1.1–1.18.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Wei-Hsin Sun
    • 1
  • Melvin L. DePamphilis
    • 2
  1. 1.National Institute of Mental HealthNational Institutes of HealthBethesda
  2. 2.National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesda

Personalised recommendations