Skip to main content

Microprotoplast-Mediated Chromosome Transfer (MMCT) for the Direct Production of Monosomic Addition Lines

  • Protocol
Book cover Plant Cell Culture Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 111))

Abstract

The transfer of single chromosomes carrying important genes between related, but sexually incongruent species, and the production of monosomic addition plants, can speed up gene introgression through homoelogous recombination or other mechanisms of gene transfer (1,2). Monosomic addition lines form the most important material for the transfer of desirable alien genes from a wild donor species to a cultivated species. Because of sexual incongruity between the wild species and the cultivated species, the demands of breeders for the transfer of desirable traits, such as disease or stress resistance and apomixis, are insufficiently met by conventional breeding methods. DNA transformation using the isolated, cloned genes makes it feasible to transfer genes across sexual barriers or taxonomic boundaries. However, several of the agro-nomically important traits are encoded by polygenes, which are clustered within blocks on specific chromosomes or scattered throughout the genome, and therefore they are not yet amenable to this technique. In addition to sexual incongruity, and the possible gene clustering for a locus (e.g., controlling apomictic reproduction in maizQ-Tripsacum backcross progeny), the occurrence of male sterility, poor seed set, and the low frequency of desired traits hinder the transfer of economically important genes. Also, by backcrossing, it is often difficult to eliminate the recombined undesirable donor genes and prevent linkage drag “hitchhiking” genes (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sybenga, J. (1992) Cytogenetics in plant breeding. Monographs on Theoretical and Applied Genetics, vol 17. Springer-Verlag, Heidelberg

    Google Scholar 

  2. Fedak, G. (1992) Perspectives on wide crosses in barley Barley Genetics Newsletter, vol 6 Department of Agronomy, Colorado State University, Fort Collins, CP, pp 683–689.

    Google Scholar 

  3. Jacobsen, E., de Jong, J. H., Kamstra, S. A., van den Berg, P. M. M. M., and Ramanna, M. S., (1994) The first and second backcross progeny of the mtergenenc fusion hybrids of potato and tomato after crosses with potato Theor Appl Genet. 88, 181–186.

    Article  Google Scholar 

  4. Famelaer, I., Gleba, Y. Y., Siderov, V. A., Kaleda, V. A., Parokonny, A. S., and Boryshuk, N. V., (1989) Intrageneric asymmetric hybrids between Nicotiana plumbaginifoha and Nicotiana sylvestris obtained by “gamma-fusion.“ Plant Sci 61, 105–117

    Article  Google Scholar 

  5. Wijbrandi, J., Zabel, P., and Koornneef, M., (1990) Restriction fragment length polymorphism analysis of somatic hybrids between Lycopersicon esculentum and irradiated L peruvianum evidence for limited donor genome elimination and extensive chromosome rearrangements Mol Gen Genet 222, 270–277

    Article  PubMed  CAS  Google Scholar 

  6. Puite, K. J., and Schaart, J. G., (1993) Nuclear genomic composition of asymmetric fusion products between irradiated transgenic Solanum brevidens and S tuberosum limited elimination of donor chromosomes and polyploidization of the recipient genome Theor Appl Genet 86, 237–244

    Article  CAS  Google Scholar 

  7. Wolters, A. M. A., Jacobsen, E., O’Connel, M., Bonnema, G., Ramulu, K. S., and de Jong, J. H., (1994) Somatic hybridization as a tool for tomato breeding Euphytwa 79, 265–277

    Article  Google Scholar 

  8. Ramulu, K. S., Dijkhuis, P., Rutgers, E., Blaas, J., Krens, F. A., and Verbeek, W. H. J., (1996) Intergenenc transfer of partial genome and direct production of monosomic addition plants by microprotoplast fusion. Theor Appl Genet 92, 316–325.

    Article  Google Scholar 

  9. Ramulu, K. S., Dijkhuis, P., Rutgers, E., Blaas, J., Krens, F. A., and Dons, J. J. M., (1996) Microprotoplast mediated transfer of single chromosomes between sexually incompatible plants Genome 39, 921–933

    Article  PubMed  CAS  Google Scholar 

  10. Verhoeven, H. A., and Ramulu, K. S., (1991) Isolation and chracterization of microprotoplasts from APM-treated suspension cells of Nicotiana plumbagmifoha Theor. Appl Genet 82, 346–352.

    Article  CAS  Google Scholar 

  11. Ramulu, K. S., Dijkhuis, P., Famelaer, I., Cardi, T., and Verhoeven, H. A., (1993) Isolation of subdiploid microprotoplasts for partial genome transfer in plants: enhancement of micronucleation and enrichment of microprotoplasts with one or a few chromosomes Planta 190, 190–198.

    Article  CAS  Google Scholar 

  12. Rutgers, E., Ramulu, K. S., Dijkhuis, P., Blaas, J., Krens, F. A., and Verhoeven, H. A., (1997) Identification and molecular analysis of transgenic potato chromosomes transferred to tomato through microprotoplast fusion. Theor. Appl Genet. 94, 1053–1059.

    Article  CAS  Google Scholar 

  13. Sybenga, J., (1989) Genetic manipulation, generative vs somatic, in Biotechnology in Agriculture and Forestry 9 Plant Protoplasts and Genetic Engeneering II (Bajaj, Y. P. S., ed), Springer-Verlag, Heidelberg, pp. 26–53.

    Google Scholar 

  14. Heslop-Harrison, J. S., Leitch, A. R., and Schwarzacher, T., (1993) The physical organization of interphase nuclei, in The Chromosome (Heslop-Harrison, J. S. and Flavell, R. B. eds), Bios, Oxford, pp. 221–232.

    Google Scholar 

  15. Schondelmaier, J., Martin, R., Jahoor, J., Houben, J., Graner, J., and Koop, H. U. (1993) Microdissection and microcloning of the barley (Hordeum vulgare L) chromosome 1HS Theor Appl Genet 86, 629–636

    Article  CAS  Google Scholar 

  16. Bennett, M. D., (1988) Parental genome separation in Fl hybrids between grass species, in Proceedings ofKew Chromosome Conference III (Brandham, P.B., ed), Her Majesty’s Stationary Office, London, pp 195–208

    Google Scholar 

  17. Gilissen, L. J., Ramulu, K. S., Fhpse, E., Meinen, E., and Stiekema, W. J. (1991) Transformation of diploid potato genotypes through Agrobactenum vectors and expression of T-DNA markers in root clones, regenerated plants and suspension cells. Acta Bot Neerl 40, 53–61.

    CAS  Google Scholar 

  18. Ramulu, K. S., Dijkhuis, P., Rutgers, E., Blaas, J., Verbeek, W. H. J., Verhoeven, H. A., and Cohjn-Hooymans, C M (1995) Microprotoplast fusion technique a new tool for gene transfer between sexually incongruent plant species. Euphytica 85, 255–268.

    Article  Google Scholar 

  19. Koornneef, M., Hanhart, C. G., and Martinelli, L., (1987) A genetic analysis of cell culture traits in tomato Theor Appl Genet 74, 633–641

    Article  Google Scholar 

  20. Mahga, P., Sz.-Brenovits, A., Maarten, L., and Joo, F., (1975) Non mendelian streptomycin resistant tobacco mutant with altered chloroplasts and mitochondria. Nature 255, 401–402.

    Article  Google Scholar 

  21. Ramulu, K. S., Dijkhuis, P., Famelaer, I., Cardi, T., and Verhoeven, H. A., (1994) Cremart: a new chemical for efficient induction of micronuclei in cells and protoplasts for partial genome transfer Plant Cell Rep 13, 687–691.

    Article  CAS  Google Scholar 

  22. Verhoeven, H. A., Ramulu, K. S., Gilissen, L. J. W., Famelaer, I., Dijkhuis, P., and Blaas J., (1991) Partial genome transfer through micronuclei in plants Acta Bot. Neerl. 40, 97–113.

    Google Scholar 

  23. Bokelmann, G. S. and Roest, S., (1983) Plant regeneration from protoplasts of potato (Solarium tuberosum cv. Bintje) Z Pjlanzenphysiol 109, 259–265

    CAS  Google Scholar 

  24. Shahin, E. A., (1985) Totipotency of tomato protoplasts Theor. Appl Genet 69, 235–240.

    Article  CAS  Google Scholar 

  25. Derks, F. H. M., Hakkert, J. C., Verbeek, W. H. J., and Cohjn-Hooymans, C. M., (1992) Genome composition of asymmetric hybrids in relation to the phylogenetic distance of the parents Nucleus-chloroplast interaction. Theor, Appl Genet 84, 930–940.

    Article  Google Scholar 

  26. Nagy, J. I., and Maliga, P., (1976) Callus induction and plant regeneration from mesophyll-protoplasts of Nicotiana sylvestns Z. Pjlanzenphysiol 78, 453–555

    Google Scholar 

  27. Sing, R.G., ( 1993) Plant Cytogenetics CRC, Boca Raton, FL

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Ramulu, K.S., Dijkhuis, P., Blaas, J., Krens, F.A., Verhoeven, H.A. (1999). Microprotoplast-Mediated Chromosome Transfer (MMCT) for the Direct Production of Monosomic Addition Lines. In: Hall, R.D. (eds) Plant Cell Culture Protocols. Methods In Molecular Biology™, vol 111. Humana Press. https://doi.org/10.1385/1-59259-583-9:227

Download citation

  • DOI: https://doi.org/10.1385/1-59259-583-9:227

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-549-2

  • Online ISBN: 978-1-59259-583-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics