Skip to main content

Centromeres and Neocentromeres

  • Protocol
Book cover Mammalian Artificial Chromosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 240))

  • 324 Accesses

Abstract

A functional centromere is formed by a chromosomal domain that very often, but not always, is recognizable by a primary constriction in metaphasic chromosomes. It is associated with a kinetochore through which a link is established with the microtubules, which pull the sister chromatids toward the poles of the two daughter cells during cell division. Centromeres therefore mediate chromosome segregation during mitosis and meiosis, but in ways that are relatively different. For instance, binding of the two sister chromatids is normally destroyed at anaphase in mitosis whereas binding is maintained in meiosis all along the first division until anaphase of the second is reached. The same locus is, however, in charge of the two distinct processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clarke, L. (1998) Centromeres: Proteins, protein complexes, and repeated domains at centromeres of simple eukaryotes. Curr. Opin. Genet. Dev. 8, 212–218.

    Article  PubMed  CAS  Google Scholar 

  2. Baum, M., Ngan, V. K., and Clarke, L. (1994) The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol. Cell Biol. 5, 747–761.

    CAS  Google Scholar 

  3. Partridge, J. F., Borgstrom, B., and Allshire, R. C. (2000) Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev. 14, 783–791.

    PubMed  CAS  Google Scholar 

  4. Sun, X., Wahlstrom, J., and Karpen, G. (1997) Molecular structure of a functional Drosophila centromere. Cell 91, 1007–1019.

    Article  PubMed  CAS  Google Scholar 

  5. Copenhaver, G. P., Nickel, K., Kuromori, T., Benito, M.-I., Kaul, S., Lin, X., et al. (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286, 2468–2474.

    Article  PubMed  CAS  Google Scholar 

  6. Harrington, J. J., Van Bokkelen, G., Mays, R. W., Gustahaw, K., and Willard, H. F. (1997) Formation of de novo centromeres and construction of first-generation human artificial chromosomes. Nat. Genet. 15, 345–355.

    Article  PubMed  CAS  Google Scholar 

  7. Ikeno, M., Grimes, T., Nakano, M., Saitoh, K., Hoshino, H., McGill, N. I., et al. (1998) Construction of YAC-based mammalian artificial chromosomes. Nat. Biotech. 16, 431–439.

    Article  CAS  Google Scholar 

  8. Trowell, H. E., Nagy, A., Vissel, B., and Choo, K. H. A. (1993) Long-range analyses of the centromeric regions of human chromosomes 13, 14 and 21: Identification of a narrow domain containing two key centromeric DNA elements. Hum. Mol. Genet. 2, 1639–1649.

    Article  PubMed  CAS  Google Scholar 

  9. Ikeno, M., Masumoto, H., and Okazaki, T. (1994) Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long-range α-satellite DNA arrays of human chromosome 21. Hum. Mol. Genet. 3, 1245–1257.

    Article  PubMed  CAS  Google Scholar 

  10. Devilee, P., Cremer, T., Slagboom, P., Bakker, E., Scholl, H. P., Hager, H. D., et al. (1986) Two subsets of human alphoid repetitive DNA show distinct preferential localization in the pericentric regions of chromosomes 13, 18, and 21. Cytogenet. Cell Genet. 41, 193–201.

    Article  PubMed  CAS  Google Scholar 

  11. Jorgensen, A. L., Bostock, C. J., and Bak, A. L. (1987) Homologous subfamilies of human alphoid repetitive DNA on different nucleolus organizing chromosomes. Proc. Natl. Acad. Sci. USA 84, 1075–1079.

    Article  PubMed  CAS  Google Scholar 

  12. Marcais, B., Gerard, A., Bellis, M., and Roizés, G. (1991) TaqI reveals two independent alphoid polymorphisms on human chromosomes 13 and 21. Hum. Genet. 86, 307–310.

    PubMed  CAS  Google Scholar 

  13. Greig, G. M., Warburton, P. E., and Willard, H.F (1993) Organization and evolution of an alpha satellite DNA subset shared by human chromosomes 13 and 21. J. Mol. Evol. 37, 464–475.

    Article  PubMed  CAS  Google Scholar 

  14. Lee, C., Wevrick, R., Fisher, R. B., Ferguson-Smith, M. A., and Lin, C. C. (1997) Human centromeric DNAs. Hum. Genet. 100, 291–304.

    Article  PubMed  CAS  Google Scholar 

  15. Alexandrov, I., Kazakov, A., Tumeneva, I., Shepelev, V., and Yurov, Y. (2001) Alphα-satellite DNA of primates: old and new families. Chromosoma 110, 253–266.

    Article  PubMed  CAS  Google Scholar 

  16. Lo, A. W., Liao, G. C., Rocchi, M., and Choo, K. H. (1999) Extreme reduction of chromosome-specific alphα-satellite array is unusually common in human chromosome 21. Genome Res. 9, 895–908.

    Article  PubMed  CAS  Google Scholar 

  17. Marcais, B., Bellis, M., Gerard, A., Pages, M., Boublik, Y., and Roizés G. (1991) Structural organization and polymorphism of the alpha satellite DNA sequences of chromosomes 13 and 21 as revealed by pulse field gel electrophoresis. Hum. Genet. 86, 311–316.

    PubMed  CAS  Google Scholar 

  18. Mashkova, T., Oparina, N., Alexandrov, I., Zinovieva, O., Marusina, A., Yurov, Y., et al. (1998) Unequal cross-over is involved in human alpha satellite DNA rearrangements on a border of the satellite domain. FEBS Lett. 441, 451–457.

    Article  PubMed  CAS  Google Scholar 

  19. Horvath, J. E., Viggiano, L., Loftus, B. J., Adams, M. D., Archidiacono, N., Rocchi, M., et al. (2000) Molecular structure and evolution of an alpha satellite/non-alpha satellite junction at 16p11. Hum. Mol. Genet. 9, 113–123.

    Article  PubMed  CAS  Google Scholar 

  20. Greig, G. M., England, S. B., Bedford, H. M., and Willard, H. F. (1989) Chromosome-specific alpha satellite DNA from the centromere of human chromosome 16. Am. J. Hum. Genet. 45, 862–872.

    PubMed  CAS  Google Scholar 

  21. Alexandrov, I., Kazakov, A., Tumeneva, I., Shepelev, V., and Yurov, Y. (2001) Alphα-satellite of primates: Old and new families. Chromosoma 110, 253–266.

    Article  PubMed  CAS  Google Scholar 

  22. Schueler, M. G., Higgins, A. W., Rudd, M. K., Gustahaw, K., and Willard H. F. (2001) Genomic and genetic definition of a functional human centromere. Science 294, 109–115.

    Article  PubMed  CAS  Google Scholar 

  23. Guy, J., Spalluto, C., McMurray, A., Heran, T., Crosier, M., Viggiano, L., et al. (2000) Genomic sequence and transcriptional profile of the boundary between pericentromeric satellites and genes on human chromosome 10q. Hum. Mol. Genet. 9, 2029–2042.

    Article  PubMed  CAS  Google Scholar 

  24. Horvath, J. E., Viggiano, L., Loftus, B. J., Adams, M. D., Archidiacono, N., Rocchi, M., et al. (2000) Molecular structure and evolution of an alpha satellite/non-alpha satellite junction at 16p11. Hum. Mol. Genet. 9, 113–123.

    Article  PubMed  CAS  Google Scholar 

  25. Hattori M., Fujiyama A., Taylor T. D., Watanabe H., Yada T., Park H. S., et al. (2000) The DNA sequence of human chromosome 21. Nature 405, 311–319.

    Article  PubMed  CAS  Google Scholar 

  26. Mashkova, T. D., Tyumeneva, I. G., Zinoveva, O. L., Romanova, L. Y., Jabs, E., and Aleksandrov, I. A. (1996) Centromeric alphα-satellite DNA at euchromatin/heterochromatin boundary of human chromosome 21. Mol. Biol. 30, 617–625.

    Google Scholar 

  27. Laurent A. M., Puechberty, J., Prades, C., Gimenez, S., and Roizés G. (1997) Site-specific retrotransposition of L1 elements within human alphoid satellite sequences. Genomics 46, 127–132.

    Article  PubMed  CAS  Google Scholar 

  28. Puechberty, J., Laurent, A. M., Gimenez, S., Billault, A., Brun-Laurent, M. E., Calenda, A., et al. (1999) Genetic and physical analyses of the centromeric and pericentromeric regions of human chromosome 5: Recombination across 5cen. Genomics 56, 274–287.

    Article  PubMed  CAS  Google Scholar 

  29. Laurent, A. M., Puechberty, J., and Roizés, G. (1999) Hypothesis: For the worst and for the best, L1Hs retrotransposons actively participate in the evolution of the human centromeric alphoid sequences. Chrom. Res. 7, 305–317.

    Article  PubMed  CAS  Google Scholar 

  30. Eichler, E. E. (2001) Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet. 17, 661–669.

    Article  PubMed  CAS  Google Scholar 

  31. Horvath, J. E., Bailey, J. A., Locke, D. P., and Eichler, E. E. (2001) Lessons from the human genome: Transitions between euchromatin and heterochromatin. Hum. Mol. Genet. 10, 2215–2223.

    Article  PubMed  CAS  Google Scholar 

  32. Brewer, C., Holloway, S., Zawalnyski, P., Schinzel, A., and FitzPatrick, D. (1999) A chromosomal duplication map of malformations: Regions of suspected haplo—and triplolethality—and tolerance of segmental aneuploidy. Am. J. Hum. Genet. 64, 172–1708.

    Article  Google Scholar 

  33. Hilliker, A. J. and Appels, R. (1982) Pleiotropic effects associated with the deletion of heterochromatin surrounding rDNA on the X chromosome of Drosophila. Chromosoma 86, 469–490.

    Article  PubMed  CAS  Google Scholar 

  34. Wu, C. I., True, J., and Johnson, N. (1989) Fitness reduction associated with the deletion of a satellite DNA array. Nature 341, 248–251.

    Article  PubMed  CAS  Google Scholar 

  35. Brun, M. E., Ruault, M., Ventura, M., Roizés, G., and De Sario, A. (2003) Juxtacentromeric region of human chromosome 21: a boundary between centromeric and heterochromatic and euchromatic chromosome arms. Gene, in press.

    Google Scholar 

  36. Gatti, M. and Pimpinelli, S. (1992) Functional elements in Drosophila melanogaster heterochromatin. Annu. Rev. Genet. 26, 239–275.

    Article  PubMed  CAS  Google Scholar 

  37. Eberl, D. F., Duyf, B. J., and Hilliker, A. J. (1993) The role of heterochromatin in the expression of heterochromatic gene, the rolled focus of Drosophila melanogaster. Genetics 134, 277–292.

    PubMed  CAS  Google Scholar 

  38. Howe, M., Dimitri, P., and Wakimoto, B. T. (1995) Cis-effects of heterochromatin on heterochromatic and euchromatic gene activity in Drosophila melanogaster. Genetics 140, 1033–1045.

    PubMed  CAS  Google Scholar 

  39. Guipponi, M., Yaspo, M. L., Riesselman, L., Chen, H., De Sario, A., Roizés, G., et al. (2000) Genomic structure of a copy of the human TPTE gene which encompasses 87 kb on the short arm of chromosome 21. Hum. Genet. 107, 127–131.

    Article  PubMed  CAS  Google Scholar 

  40. Ruault, M., Van den Bruggen, P., Brun, M. E., Boyle, S., Roizés, G., and De Sario, A. (2002) New BAGE (B melanoma antigens) genes mapping to the juxtacentromeric regions of human chromosomes 13 and 21 have a cancer/testis expression profile. Eur. J. Hum. Genet. 10, 833–840.

    Article  PubMed  CAS  Google Scholar 

  41. Therman, E., Sarto, G. E., and Patau, K. (1974) Apparently isodicentric but functionally monocentric X chromosome in man. Am. J. Hum. Genet. 26, 83–92.

    PubMed  CAS  Google Scholar 

  42. Sullivan, B. A. and Willard H. F. (1998) Stable dicentric X chromosomes with two functiona centromeres. Nat. Genet. 20, 227–228.

    Article  PubMed  CAS  Google Scholar 

  43. Agudo, M., Abad, J. P., Molina, I., Losada, A., Ripoli, P., and Villasante A. (2000) A dicentric chromosome of Drosophila melanogaster showing alternate centromere inactivation. Chromosoma 109, 190–196.

    Article  PubMed  CAS  Google Scholar 

  44. Sullivan, B. A. and Schwartz, S. (1995) Idenditification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum. Mol. Genet. 4, 2189–2197.

    Article  PubMed  CAS  Google Scholar 

  45. Warburton, P. E. (2001) Epigenetic analysis of kinetochore assembly on variant human centromeres. Trends Genet. 17, 243–247.

    Article  PubMed  CAS  Google Scholar 

  46. Voullaire, L. E., Slater, H. R., Petrovic, V., and Choo, K. H.A. (1993) A functional marker centromere with no detectable alphα-satellite, satellite III, or CENP-B protein: Activation of a latent centromere. Am. J. Hum. Genet. 52, 1153–1163.

    PubMed  CAS  Google Scholar 

  47. Barry A. E., Bateman M., Howman E. V., Cancilla M. R., Tainton K. M., Irvine D. V., et al. (2000) The 10q25 neocentromere and its inactive progenitor have identical primary nucleotide sequence: Further evidence for epigenetic modification. Genome Res. 10, 832–838.

    Article  PubMed  CAS  Google Scholar 

  48. Warburton P. E., Dolled M., Mahmood R., Alonso A., Li S., Naritomi K., et al. (2000) Molecular cytogenetic analysis of eight inversion duplications of human chromosome 13q that each contain a neocentromere. Am. J. Hum. Genet. 66, 1794–1806.

    Article  PubMed  CAS  Google Scholar 

  49. Koch, J. (2000) Neocentromeres and alpha satellite: A proposed structural code for functional human centromere DNA. Hum. Mol. Genet. 9, 149–154.

    Article  PubMed  CAS  Google Scholar 

  50. Fitzgerald, D. J., Dryden, G. L., Bronson, E. C., Williams, J. S., and Anderson, J. N. (1994) Conserved patterns of bending in satellite and nucleosome positioning DNA. J. Biol. Chem. 269, 303–314.

    Google Scholar 

  51. Lo, A. W. I., Craig, J. M., Saffery, R., Kalitsis, P., Irvine, D. V., Earle, E., et al. (2001) A 330 kb CENP-A binding domain and altered replication timing at a human neocentromere. EMBO J. 20, 2087–2096.

    Article  PubMed  CAS  Google Scholar 

  52. Lo, A. W. I., Magliano, D. J., Sibson, M. C., Kalitsis, P., Craig, J. M., and Choo, K. H.A. (2001) A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res. 11, 448–457.

    Article  PubMed  CAS  Google Scholar 

  53. Saffery R., Irvine D. V., Griffiths B., Kalitsis P., Wordeman L., and Choo K. H. (2000) Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins. Hum. Mol. Genet. 9, 175–185.

    Article  PubMed  CAS  Google Scholar 

  54. Hudson, D. F., Fowler, K. J., Earle, E., Saffery, R., Kalitsis, P., Trowell, H., et al. (1998) Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weights. J. Cell Biol. 141, 309–319.

    Article  PubMed  CAS  Google Scholar 

  55. Williams, B. C., Murphy, T. D., Goldberg, M. L., and Karpen, G. H. (1998) Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat. Genet. 18, 30–37.

    Article  PubMed  CAS  Google Scholar 

  56. Yu, H. G., Hiatt, E. N., Chan, A., Sweeney, M., and Dawe, R. K. (1997) Neocentromere-mediated chromosome movement in maize. J. Cell Biol. 139, 831–840.

    Article  PubMed  CAS  Google Scholar 

  57. Tyler-Smith, C., Ginelli, G., Giglio, S., Floridia, G., Pandya, A., Terzoli, G., et al. (1999) Transmission of a fully functional human neocentromere through three generations. Am. J. Hum. Genet. 64, 1440–1444.

    Article  PubMed  CAS  Google Scholar 

  58. Saffery R., Wong L. H., Irvine D. V., Bateman M. A., Griffiths B., Cutts S. M., et al. (2001) Construction of neocentromere-based human minichromosomes by telomere-associated chromosomal truncation. Proc. Natl. Acad. Sci. USA 98, 5705–5710.

    Article  PubMed  CAS  Google Scholar 

  59. Hassold, T. and Hunt P. (2001) To err (meiotically) is human: The genesis of human aneuploidy. Nat. Rev. Genet. 2, 280–291.

    Article  PubMed  CAS  Google Scholar 

  60. Hassold, T., Merrill, M., Adkins, K., Freeman, S., and Sherman, S. (1995) Recombination and maternal age-dependent non-disjunction: Molecular studies of trisomy 16. Am. J. Hum. Genet. 57, 867–874.

    PubMed  CAS  Google Scholar 

  61. Mahtani M. M. and Willard H. F. (1998) Physical and genetic mapping of the human X chromosome centromere: Repression of recombination. Genome Res. 8, 100–110.

    PubMed  CAS  Google Scholar 

  62. Lima-de-Faria, A. and Jaworska, H. (1968) Late DNA synthesis in heterochromatin. Nature 217, 138–142.

    Article  PubMed  CAS  Google Scholar 

  63. Dupraw, E. J. (1968) Cell and Molecular Biology. Academic Publishing Co., New York, p. 892.

    Google Scholar 

  64. McCarroll, R. M. and Fangman, W. L. (1988) Time of replication of yeast centromeres and telomeres. Cell 54, 505–513.

    Article  PubMed  CAS  Google Scholar 

  65. Ahmad, K. and Henikoff, S. (2001) Centromeres are specialised replication domains in heterochromatin. J. Cell Biol. 153, 101–109.

    Article  PubMed  CAS  Google Scholar 

  66. Sullivan, B. and Karpen, G. (2001) Centromere identity in Drosophila is not determined in vivo by replicating timing. J. Cell Biol. 154, 683–690.

    Article  PubMed  CAS  Google Scholar 

  67. Ten Hagen K. G., Gilbert D. M., Willard H. F., and Cohen S. N. (1990) Replication timing of DNA sequences associated with human centromeres and telomeres. Mol. Cell Biol. 10, 6348–6355.

    PubMed  Google Scholar 

  68. O’Keefe R. T., Henderson S. C., and Spector D. L. (1992) Dynamic organization of DNA replication in mammalian cell nuclei: Spatially and temporally defined replication of chromosome-specific alphα-satellite DNA sequences. J. Cell Biol. 116, 1095–1110.

    Article  Google Scholar 

  69. Selig, S., Ariel, M., Goitein, R., Marcus, M., and Cedar, H. (1988) Regulation of mouse satellite DNA replication time. EMBO J. 7, 419–426.

    PubMed  CAS  Google Scholar 

  70. Jasencakova, Z., Meister, A., and Schubert, I. (2001) Chromatin organisation and its relation to replication and histone acetylation during the cell cycle in barley. Chromosoma 110, 83–92.

    Article  PubMed  CAS  Google Scholar 

  71. Shelby, R. D., Monier, K., and Sullivan, K. F. (2000) Chromatin assembly at kinetochores is uncoupled from DNA replication. J. Cell Biol. 151, 1113–1118.

    Article  PubMed  CAS  Google Scholar 

  72. Henikoff, S., Kami, A., and Malik, H. S. (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293, 1098–1102.

    Article  PubMed  CAS  Google Scholar 

  73. Litmanovitch, T., Altaras, M. M., Dotan, A., and Avivi, L. (1998) Asynchronous replication of homologous alphα-satellite DNA loci in man is associated with nondisjunction. Cytogenet. Cell Genet. 81, 26–35.

    Article  PubMed  CAS  Google Scholar 

  74. Archidiacano, N., Antonacci, R., Marzella, R., Finelli, P., Lonoce, A., and Rocchi, M. (1995) Comparative mapping of human alphoid sequences in great apes using fluorescence in situ hybridization. Genomics 25, 477–484.

    Article  Google Scholar 

  75. Montefalcone, G., Tempesta, S., Rocchi, M., and Archidiacano, N. (1999) Centromere repositioning. Genome Res. 9, 1184–1188.

    Article  PubMed  CAS  Google Scholar 

  76. Ventura, M., Archidiacono, N., and Rocchi, M. (2000) Centromere emergence in evolution. Genome Res. 11, 595–599.

    Article  Google Scholar 

  77. Malik, H. S. and Henikoff, S. (2001) Adaptative evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157, 1293–1298.

    PubMed  CAS  Google Scholar 

  78. Smith, G. P. (1976) Evolution of repeated DNA sequences by unequal crossingover. Science 191, 528–535.

    Article  PubMed  CAS  Google Scholar 

  79. Stephan, W. (1989) Tandem-repetitive noncoding DNA: Forms and forces. Mol. Biol. Evol. 6, 198–212.

    PubMed  CAS  Google Scholar 

  80. Walsh, J. B. (1987) Persistence of tandem arrays: Implications for satellite and simple-sequence DNAs. Genetics 115, 553–567.

    PubMed  CAS  Google Scholar 

  81. Fletcher, H. L. and Rafferty, J. A. (1993) The effects of unequal sister chromatid exchange on length of arrays of repeated sequences. J. Theor. Biol. 164, 507–514.

    Article  PubMed  CAS  Google Scholar 

  82. Marcais, B., Charlieu, J. P., Allain, B., Brun, E., Bellis, M., and Roizés, G. (1991) On the mode of evolution of alpha satellite DNA in human populations. J. Mol. Evol. 33, 42–48.

    Article  PubMed  CAS  Google Scholar 

  83. Marcais, B., Laurent, A. M., Charlieu, J. P., and Roizés, G. (1993) Organization of the variant domains of alpha satellite DNA on human chromosome 21. J. Mol. Evol. 37, 171–178.

    Article  PubMed  CAS  Google Scholar 

  84. Shelby, R. D., Vafa, O., and Sullivan, K. F. (1997) Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J. Cell Biol. 136, 501–513.

    Article  PubMed  CAS  Google Scholar 

  85. Strahl, B. D. and Allis, C. D. (2000) The language of covalent histone modifications. Nature 403, 41–45.

    Article  PubMed  CAS  Google Scholar 

  86. Junewein, T. (2000) Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol. 11, 266–273.

    Article  Google Scholar 

  87. Razin, A. and Kafri, T. (1994) DNA methylation from embryo to adult. Prog. Nucleic Acids Res. Mol. Biol. 48, 53–81.

    Article  CAS  Google Scholar 

  88. Miniou, P., Jeanpierre, M., Bourc’his, D., {mnCoutinho Barbosa}, A. C., Blanquet, V., and Viegas-Péquignot, E. (1997) Alphα-satellite DNA methylation in normal individuals and in ICF patients: Heterogeneous methylation of constitutive heterochromatin in adult and fetal tissues. Hum. Genet. 99, 738–745.

    Google Scholar 

  89. Xu, G-L., Bestor, T. H., Bourc’his, D., Hsieh, C-L., Tommerup, N., Bugge, M., et al. (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187–191.

    Article  PubMed  CAS  Google Scholar 

  90. Okano, M., Bell, D. W., Haber, A., and Li, E. (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257.

    Article  PubMed  CAS  Google Scholar 

  91. Bernardi, G. (1993) The isochore organization of the human genome and its evolutionary history-a review. Gene 135, 57–66.

    Article  PubMed  CAS  Google Scholar 

  92. International Human Genome Consortium. (2001) Initial sequencing and analysis of the human genome, Nature, 409, 860–921.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Roizés, G., Grunau, C., Buard, J., De Sario, A., Puechberty, J. (2004). Centromeres and Neocentromeres. In: Sgaramella, V., Eridani, S. (eds) Mammalian Artificial Chromosomes. Methods in Molecular Biology, vol 240. Humana Press. https://doi.org/10.1385/1-59259-434-4:77

Download citation

  • DOI: https://doi.org/10.1385/1-59259-434-4:77

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-096-0

  • Online ISBN: 978-1-59259-434-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics