Skip to main content

Mammalian Artificial Chromosome Formation in Human Cells After Lipofection of a PAC Precursor

  • Protocol
Book cover Mammalian Artificial Chromosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 240))

  • 317 Accesses

Abstract

An artificial chromosome is a synthetic structure that carries three fundamental components for its long-term survival, replication, and segregation after cell division. These components are telomeres, one or more replication origins, and a centromere. The creation of such a molecule became feasible initially in the budding yeast Saccharomyces cerevisiae, where replication origins and centromeric sequences are well defined. In this organism, autonomously replicating sequences (ARS) were isolated by their ability to allow replication of plasmids carrying them. Plasmids containing an ARS element are capable of extrachromosomal replication in selective conditions but are lost if selection is removed from the culture because of unequal segregation. Introduction of a functional centromere to an ARS plasmid provides mitotic stability to the resulting yeast artificial chromosome (YAC) (reviewed by Newlon in ref. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newlon, C. S. (1988) Yeast chromosome replication and segregation. FEMS Microbiol. Rev. 52, 568–601.

    CAS  Google Scholar 

  2. Farr, C.J., Stevanovic, M., Thomson, E. J., Goodfellow, P. N., and Cooke, H. J. (1992) Telomere-associated chromosome fragmentation: application in genome manipulation and analysis. Nat. Genet. 2, 275–282.

    Article  PubMed  CAS  Google Scholar 

  3. Auriche, C., Donini, P., and Ascenzioni F. (2001) Molecular and cytological analysis of a 5.5 Mb minichromosome. EMBO Rep. Feb. 2, 102–107.

    Article  CAS  Google Scholar 

  4. Heller, R., Brown, K. E., Burgtorf C., and Brown W. R. (1996) Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage. Proc. Natl. Acad. Sci. USA 93, 7125–7130.

    Article  PubMed  CAS  Google Scholar 

  5. Shen, M. H., Mee, P. J., Nichols, J., Yang, J., Brook, F., Gardner, R. L., et al. (2000) A structural defined mini-chromosome vector for the mouse germline. Curr. Biol. 10, 31–34.

    Article  PubMed  CAS  Google Scholar 

  6. Murphy, T. D. and Karpen G. H. (1995) Localization of centromere function in a Drosophila minichromosome. Cell 82, 599–609.

    Article  PubMed  CAS  Google Scholar 

  7. Patnaik, P. K., Axelrod, N., Van der Ploeg, L. H., and Cross, G. A. (1996) Artificial linear mini-chromosomes for Trypanosoma brucei. Nucleic Acids Res. 24, 668–675.

    Article  PubMed  CAS  Google Scholar 

  8. Harrington, J. J., Van Bokkelen, G., Mays, R.W., Gustashaw, K., and Willard, H. F. (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat. Genet. 15, 345–355.

    Article  PubMed  CAS  Google Scholar 

  9. Ikeno M., Grimes, B., Okazaki, T., Nakano, M., Saitoh, K., Hoshino, H., et al. (1998) Construction of YAC-based mammalian artificial chromosomes. Nat. Biotechnol. 16, 431–439.

    Article  PubMed  CAS  Google Scholar 

  10. Henning K.A., Novotny E. A., Compton S. T., Guan X. Y., Liu P. P., and Ashlock M. A. (1999) Human artificial chromosomes generated by modification of a yeast artificial chromosome containing both human α-satellite and single-copy DNA sequences. Proc. Natl. Acad. Sci. USA 96, 592–597.

    Article  PubMed  CAS  Google Scholar 

  11. Ebersole T. A., Ross A., Clark E., McGill, N., Schindelhauer D., Cooke, H., et al. (2000) Mammalian artificial chromosome formation from circular alphoid input DNA does not require telomere repeats. Hum. Mol. Genet. 9, 1623–1631.

    Article  PubMed  CAS  Google Scholar 

  12. Ten Hagen, K. G., Gilbert, D. M., Willard, H. F., and Cohen, S. N. (1990) Replication timing of DNA sequences asociated with human centromeres and telomeres. Mol. Cell. Biol. 10, 6348–6355.

    PubMed  Google Scholar 

  13. Frengen, E., Zhao, B., Howe, S., Weichenhan D., Osoegawa, K., Gjernes, E., et al. (2000) Modular bacterial artificial chromosome vectors for transfer of large inserts into mammalian cells. Genomics 68, 118–126.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

de las Heras, J.I., D’Aiuto, L., Cooke, H. (2004). Mammalian Artificial Chromosome Formation in Human Cells After Lipofection of a PAC Precursor. In: Sgaramella, V., Eridani, S. (eds) Mammalian Artificial Chromosomes. Methods in Molecular Biology, vol 240. Humana Press. https://doi.org/10.1385/1-59259-434-4:187

Download citation

  • DOI: https://doi.org/10.1385/1-59259-434-4:187

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-096-0

  • Online ISBN: 978-1-59259-434-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics