Skip to main content

Molecular Techniques to Improve Outcome in Childhood ALL

  • Protocol
Book cover Pediatric Hematology

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 91))

  • 641 Accesses

Abstract

During the last two decades, survival in cases of childhood acute lymphoblastic leukemia (ALL) has improved from 50% to approx 80%. This has been achieved primarily by intensifying therapy, particularly for high-risk groups (1). During this period, biological features of the disease have been investigated for prognostic significance, and along with clinical features, define patient groups for risk-adapted therapy (2). Although the prognostic significance of these variables is dependent on the type and intensity of the treatment regimen, in parallel there have been unprecedented advances made in our understanding of the biology of the disease (3-5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schrappe, M., Camitta, B., Pui, C. H., et al. (2000) Long-term results of large prospective trials in childhood acute lymphoblastic leukemia. Leukemia 14, 2193–2194.

    Article  PubMed  CAS  Google Scholar 

  2. Nachman, J. B., Sather, H. N., Sensel, M. G., et al. (1998) Augmented post-induction therapy for children with high-risk acute lymphoblastic leukemia and a slow response to initial therapy. N. Engl. J. Med. 338, 1663–1671.

    Article  PubMed  CAS  Google Scholar 

  3. Jones, L. K. and Saha, V. (2002) Chromatin modification, leukaemia and implications for therapy. Br. J. Haematol. 118, 714–727.

    Article  PubMed  Google Scholar 

  4. Saha, V., Young, B. D., and Freemont, P. S. (1998) Translocations, fusion genes, and acute leukemia. J. Cell Biochem. 30–31(Suppl.), 264–276.

    Article  Google Scholar 

  5. Look, A. T. (1997) Oncogenic transcription factors in the human acute leukemias. Science 278, 1059–1064.

    Article  PubMed  CAS  Google Scholar 

  6. Secker-Walker, L. M., Swansbury, G. J., and Hardisty, R. M. (1978) Prognostic implications of chromosomal findings in acute lymphoblastic leukaemia at diagnosis. Br. Med. J. 2, 1529–1530.

    Article  PubMed  CAS  Google Scholar 

  7. Look, A. T. (1988) The cytogenetics of childhood leukemia: clinical and biologic implications. Pediatr. Clin. North Am. 35, 723–741.

    PubMed  CAS  Google Scholar 

  8. Golub, T. R., Barker, G. F., Bohlander, S. K., et al. (1995) Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 92, 4917–4921.

    Article  PubMed  CAS  Google Scholar 

  9. Cave, H., Cacheux, V., Raynaud, S., et al. (1997) ETV6 is the target of chromosome 12p deletions in t(12;21) childhood acute lymphocytic leukemia. Leukemia 11, 1459–1464.

    Article  PubMed  CAS  Google Scholar 

  10. Poirel, H., Lacronique, V., Mauchauffe, M., et al. (1998) Analysis of TEL proteins in human leukemias. Oncogene 16, 2895–2903.

    Article  PubMed  CAS  Google Scholar 

  11. Nordgren, A., Heyman, M., Sahlen, S., et al. (2002) Spectral karyotyping and interphase FISH reveal abnormalities not detected by conventional G-banding. Implications for treatment stratification of childhood acute lymphoblastic leukaemia: detailed analysis of 70 cases. Eur. J. Haematol. 68, 31–41.

    Article  PubMed  CAS  Google Scholar 

  12. Harrison, C. J., Gibbons, B., Yang, F., et al. (2000) Multiplex fluorescence in situ hybridization and cross species color banding of a case of chronic myeloid leukemia in blastic crisis with a complex Philadelphia translocation. Cancer Genet. Cytogenet. 116, 105–110.

    Article  PubMed  CAS  Google Scholar 

  13. Lilleyman, J. S. (1998). Clinical importance of speed of response to therapy in childhood lymphoblastic leukaemia. Leuk. Lymphoma 31, 501–506.

    PubMed  CAS  Google Scholar 

  14. Szczepanski, T., Orfao, A., van der Velden, V. H., San Miguel, J. F., and van Dongen, J. J. (2001). Minimal residual disease in leukaemia patients. Lancet Oncol. 2, 409–417.

    Article  PubMed  CAS  Google Scholar 

  15. Pallisgaard, N., Clausen, N., Schroder, H., and Hokland, P. (1999). Rapid and sensitive minimal residual disease detection in acute leukemia by quantitative real-time RT-PCR exemplified by t(12;21) TEL-AML1 fusion transcript. Genes Chromosomes Cancer 26, 355–365.

    Article  PubMed  CAS  Google Scholar 

  16. van Dongen, J. J., Macintyre, E. A., Gabert, J. A., et al. (1999). Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 13, 1901–1928.

    Article  PubMed  Google Scholar 

  17. Young, B. D. and Saha, V. (1996). Chromosome abnormalities in leukaemia: the 11q23 paradigm. Cancer Surv. 28, 225–245.

    PubMed  CAS  Google Scholar 

  18. Goulden, N., Oakhill, A., and Steward, C. (2001) Practical application of minimal residual disease assessment in childhood acute lymphoblastic leukaemia annotation. Br. J. Haematol. 112, 275–281.

    Article  PubMed  CAS  Google Scholar 

  19. Szczepanski, T., Willemse, M. J., Brinkhof, B., van Wering, E. R., van der Burg, M., and van Dongen, J. J. (2002) Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood 99, 2315–2323.

    Article  PubMed  CAS  Google Scholar 

  20. van Dongen, J. J., Seriu, T., Panzer-Grumayer, E. R., et al. (1998). Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 352, 1731–1738.

    Article  PubMed  Google Scholar 

  21. Panzer-Grumayer, E. R., Schneider, M., Panzer, S., Fasching, K., and Gadner, H. (2000) Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood 95, 790–794.

    PubMed  CAS  Google Scholar 

  22. Bader, P., Hancock, J., Kreyenberg, H., et al. (2002) Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with ALL. Leukemia 16, 1668–1672.

    Article  PubMed  CAS  Google Scholar 

  23. Knechtli, C. J., Goulden, N. J., Hancock, J. P., et al. (1998) Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood 92, 4072–1079.

    PubMed  CAS  Google Scholar 

  24. Ginzinger, D. G. (2002) Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp. Hematol. 30, 503–512.

    Article  PubMed  CAS  Google Scholar 

  25. Rutherford, A. (2001) Leukemia cells fall on their swords. Trends Mol. Med. 7, 149.

    Article  PubMed  CAS  Google Scholar 

  26. Druker, B. J., Sawyers, C. L., Kantarjian, H., et al. (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med. 344, 1038–1042.

    Article  PubMed  CAS  Google Scholar 

  27. Kantarjian, H., Sawyers, C., Hochhaus, A., et al. (2002) Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N. Engl. J. Med. 346, 645–652.

    Article  PubMed  CAS  Google Scholar 

  28. Golub, T. R., Slonim, D. K., Tamayo, P., et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537.

    Article  PubMed  CAS  Google Scholar 

  29. Yeoh, E. J., Ross, M. E., Shurtleff, S. A., et al. (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1, 133–143.

    Article  PubMed  CAS  Google Scholar 

  30. Ferrando, A. A., Neuberg, D. S., Staunton, J., et al. (2002) Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1, 75–87.

    Article  PubMed  CAS  Google Scholar 

  31. Velculescu, V. E., Vogelstein, B. & Kinzler, K. W. (2000) Analysing uncharted transcriptomes with SAGE. Trends Genet. 16, 423–425.

    Article  PubMed  CAS  Google Scholar 

  32. Lennard, L., Welch, J. C., and Lilleyman, J. S. (1997) Thiopurine drugs in the treatment of childhood leukaemia: the influence of inherited thiopurine methyltransferase activity on drug metabolism and cytotoxicity. Br. J. Clin. Pharmacol. 44, 455–461.

    Article  PubMed  CAS  Google Scholar 

  33. McLeod, H. L., Krynetski, E. Y., Relling, M. V., and Evans, W. E. (2000) Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia 14, 567–572.

    Article  PubMed  CAS  Google Scholar 

  34. Relling, M. V., Yanishevski, Y., Nemec, J., et al. (1998) Etoposide and antimetabolite pharmacology in patients who develop secondary acute myeloid leukemia. Leukemia 12, 346–352.

    Article  PubMed  CAS  Google Scholar 

  35. Relling, M. V., Rubnitz, J. E., Rivera, G. K., et al. (1999) High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet 354, 34–39.

    Article  PubMed  CAS  Google Scholar 

  36. Stanulla, M., Schrappe, M., Brechlin, A. M., Zimmermann, M., and Welte, K. (2000) Polymorphisms within glutathione S-transferase genes (GSTM1, GSTT1, GSTP1) and risk of relapse in childhood B-cell precursor acute lymphoblastic leukemia: a case-control study. Blood 95, 1222–1228.

    PubMed  CAS  Google Scholar 

  37. Ulrich, C. M., Yasui, Y., Storb, R., et al. (2001) Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism. Blood 98, 231–234.

    Article  PubMed  CAS  Google Scholar 

  38. Venkatakrishnan, K., von Moltke, L. L., and Greenblatt, D. J. (2000) Effects of the antifungal agents on oxidative drug metabolism: clinical relevance. Clin. Pharmacokinet. 38, 111–180.

    Article  PubMed  CAS  Google Scholar 

  39. Wall, D. B., Kachman, M. T., Gong, S. S., Parus, S. J., Long, M. W., and Lubman, D. M. (2001) Isoelectric focusing nonporous silica reversed-phase high-performance liquid chromatography/electrospray ionization time-of-flight mass spectrometry: a three-dimensional liquid-phase protein separation method as applied to the human erythroleukemia cell-line. Rapid. Commun. Mass Spectrom. 15, 1649–1661.

    Article  PubMed  CAS  Google Scholar 

  40. Wright, G. L., Jr. (2002) SELDI proteinchip MS: a platform for biomarker discovery and cancer diagnosis. Expert Rev. Mol. Diagn. 2, 549–563.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

van Delft, F.W., Saha, V. (2004). Molecular Techniques to Improve Outcome in Childhood ALL. In: Goulden, N.J., Steward, C.G. (eds) Pediatric Hematology. Methods in Molecular Medicine™, vol 91. Humana Press. https://doi.org/10.1385/1-59259-433-6:111

Download citation

  • DOI: https://doi.org/10.1385/1-59259-433-6:111

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-043-4

  • Online ISBN: 978-1-59259-433-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics